Porous nanopeapod Pd catalyst with excellent stability and efficiency†

Xuecheng Chen,*a Chao Zhang,ab Ryszard J. Kalenczuk,b Paul K. Chu,c Dengsong Zhang,*d Tao Tang*a and Ewa Mijowskaab

Porous Pd@m-C/SiO2 nanopeapods are prepared by a nano-confinement method. The Pd nanoparticles show high efficiency and stability in chemical reactions such as reduction of nitrobenzene by H2 and reduction of NO by NH3. The high catalytic activity is attributed to the unique peapod structure, mesoporous wall, and large specific surface area on Pd@m-C/SiO2 rendering the Pd nanoparticles highly active in chemical reactions.

Design of new-generation catalysts with high activity, selectivity, and resistance to deactivation is an important objective of scientific research and applications.1–4 In recent years, nanotechnology has played essential roles in many scientific fields. For instance, nanoparticles made of platinum-group metals have been studied as primary catalysts in low-temperature reduction of automobile pollutants, olefin hydrogenation, dehydrogenation reaction, and Suzuki coupling reaction.5–10 The thermal and chemical stability of nanoparticulate catalysts is crucial to the catalytic performance. However, metal nanoparticles can easily deform and aggregate because of the high surface energy and the catalytic efficacy of metal nanoparticles deteriorates during chemical reactions.11 Unfortunately, many industrial catalytic processes are carried out at high temperature and consequently, nanoparticle catalysts with long-term stability at high temperature are highly needed.12–19 The main reasons for deactivation is that organic species cover the catalyst surface leading to loss of precious metals and growth of metal particles20 and it is challenging to design catalysts with long-term stability, efficiency, and selectivity.

In this work, peapod Pd@m-C/SiO2 is embedded with Pd nanoparticles to improve the thermal stability. The outer mesoporous C/SiO2 layer prevents Pd nanoparticles from sintering and protects the Pd nanoparticles during catalytic reactions at high temperature. The mesoporous C/SiO2 wall has a large specific surface area allowing more reactants to access the Pd nanoparticles and high catalytic activity. Preparation of the catalyst is relatively easy compared to commercial Pd/AC catalysts. To demonstrate the catalytic activity of the materials, two chemical reactions are conducted and the catalyst shows excellent long-term stability and high activity during the reactions.

The peapod Pd@m-C/SiO2 nanotubes are prepared in three steps as illustrated in Fig. 1: (1) deposition of Pd nanoparticles on carbon nanotubes (CNT/Pd), (2) deposition of a mesoporous silica layer on CNT/Pd to produce the CNT/Pd@m-SiO2 mesostructure, and (3) annealing at a high temperature under Ar to produce the peapod Pd@m-C/SiO2. The peapod Pd@m-C/SiO2 consists of Pd nanoparticles and a mesoporous C/SiO2 layer.

The Pd nanoparticles are characterized by TEM. The Pd nanoparticles have a mean diameter of 2.5 nm and are densely and mono-dispersed on the CNTs (Fig. 2a). After the sol–gel process, a mesoporous silica layer is formed on the CNT/Pd structure as shown in Fig. 2b. The small black dots are Pd nanoparticles and the thickness of the mesoporous layer is about 20 nm. After annealing in Ar, the Pd@m-C/SiO2 structure is formed as shown in Fig. 2c, d and Fig. S1 (ESI†). In the

Fig. 1 Schematic showing the preparation of the peapod Pd@m-C/SiO2.
The peapod structure, the Pd nanoparticles have a mean diameter of 15 nm and the outer mesoporous layer is composed of carbon and silica. The Pd nanoparticles have high stability during annealing due to confinement rendered by the outer mesoporous layer which stabilizes the Pd nanoparticles and protect them from aggregation.

The structure of the Pd@m-C/SiO$_2$ is determined by X-ray diffraction (XRD). As shown in Fig. 3a, the strong diffraction peaks at 40.1°, 46.7°, and 68.7° can be indexed to the (111), (110), and (100) reflections of crystalline Pd (0), respectively, and metallic Pd is produced during annealing. The peak at 40.1° has the highest intensity and the (111) plane is the dominant crystal facet. The diffraction peaks at 26° and 22° correspond to the (002) planes of graphite and amorphous silica, respectively and the intense diffraction peak at 2.7° (100) observed from the small-angle region indicates the formation of the ordered silica-mesostructure in the peapod structure. The N$_2$ sorption/desorption evaluation shows that the peapod structure has a characteristic type IV isotherm.

The total surface area on Pd@m-C/SiO$_2$ is as large as 537 m2 g$^{-1}$ confirming the mesoporous structure (Fig. 3b) consistent with XRD. The pore sizes are 1.6 and 3.7 nm according to the Barrett–Joyner–Halenda (BJH) method as shown in Fig. S2 (ESI†). The mesoporous structure allows the reactants to access the Pd nanoparticles and the products to exit through the mesopores. In addition, the metal interface may be exploited to boost the catalytic performance.11

To determine the catalytic activity and stability, the catalytic performance of Pd@m-C/SiO$_2$ is investigated by conducting catalytic reduction of nitrobenzene to aniline with H$_2$ in the model reaction.$^{23-25}$ The commercial Pd/AC (10 wt%) serves as the reference for comparison (Fig. 4). When Pd/AC is the catalyst in the reduction of nitrobenzene, conversion of nitrobenzene decreases from 100% to 82.6% after 10 cycles. However, the conversion rate of nitrobenzene is retained at 99.8% after 10 cycles for the Pd@m-C/SiO$_2$ catalyst providing evidence that the catalytic efficiency of Pd@m-C/SiO$_2$ is better than that of Pd/AC. To further demonstrate the advantage of the peapod Pd@m-C/SiO$_2$, the selectivity of the two catalysts is investigated by reduction of nitrobenzene to aniline as shown in Fig. 4b. After 10 cycles, the selectivity of the Pd/AC catalyst drops to 94.2% whereas that of the Pd@m-C/SiO$_2$ catalyst is stable at 99.8%. Hence, the peapod structure is better than the commercial Pd/AC catalyst in terms of the catalytic efficiency, selectivity, and stability. After each reaction, the Pd@m-C/SiO$_2$ catalyst can be easily separated from the reactants without leaching of Pd species but on the other hand, it is difficult to recover the Pd/AC catalyst from the organic solvent.

To further demonstrate the advantage of the peapod Pd@m-C/SiO$_2$ catalyst, NO is reduced by NH$_3$ in the presence of the Pd catalyst at 200 °C as shown in the following:

$$4\text{NO} + 4\text{NH}_3 + \text{O}_2 \rightarrow 4\text{N}_2 + 6\text{H}_2\text{O}.$$

Selective catalytic reduction of NO with NH$_3$ is an effective and economical method to eliminate NO$_x$ and Pd has been demonstrated as the active component in catalytic reduction of NO.$^{26-28}$ In the presence of the Pd@m-C/SiO$_2$ catalyst, the conversion of NO is kept at 90% for 7 h continuously but that with the Pd/AC catalyst drops to 73% after 7 h illustrating the advantage of the former under the same conditions. The catalytic activity is mainly attributed to the degree of dispersion of the Pd nanoparticles. In addition, owing to the weak adhesion of Pd nanoparticles on the AC support, the Pd nanoparticles can migrate and agglomerate during the reactions leading to reduced catalytic activity.
activity. After a mesoporous C/SiO$_2$ layer is formed, NO conversion in the presence of the Pd@m-C/SiO$_2$ catalyst is enhanced significantly and it can be explained by that the mesoporous C/SiO$_2$ sheath serves as a good support to improve dispersion of the Pd nanoparticles as well as an effective barrier to prevent aggregation of Pd nanoparticles (Fig. 5).29,30

The experimental results obtained from the two catalysts provide information on why the peapod Pd catalyst is better than the Pd/AC catalyst. In the peapod structure, the Pd nanoparticles are trapped in the m-C/silica nanotubes which prevent the Pd nanoparticles from aggregating into bigger nanocrystals and the m-C/silica wall is stable even at a high temperature. The porous wall not only leads to high activity of the Pd nanoparticles, but also accumulates more reactants to react with the Pd nanoparticles. This mitigates the formation of products on the Pd catalyst to deactivate the catalyst.

The peapod Pd@m-C/SiO$_2$ embedded with Pd nanoparticles shows high stability and selectivity and is a good high-temperature catalyst. The unique peapod structure with an outer mesoporous C/SiO$_2$ layer not only protects the Pd nanoparticles from aggregating, but also provides the mesoporous channels for molecules to access the Pd nanoparticles. The catalysts is stable at high temperature in long reactions. The Pd@m-C/SiO$_2$ catalyst also shows excellent catalytic selectivity and stable catalytic activity as observed from the reduction of nitrobenzene to aniline with H$_2$ as well as NO reduction by NH$_3$. The Pd@m-C/SiO$_2$ catalyst is very promising in high-temperature chemical reactions.

This work was financially supported by the Chinese National Science Foundation under project no. 51303170, National Science Centre of Poland under grant no. UMO-2015/18/E/ST8/00291, and City University of Hong Kong Applied Research grant (ARG) no. 9667122.

Notes and references