Hard and adherent a-C:H gradient coatings by stress engineering

Liangliang Liu a, Xiaokai An a, Zhengyong Ma a, Zhongzhen Wu a, b, *, Wei Tang a, Hai Lin a, Ricky KY. Fu b, Xiubo Tian b, Paul K. Chu b, Feng Pan a

a School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
b Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, China

A R T I C L E I N F O

Article history:
Received 27 April 2018
Received in revised form
22 June 2018
Accepted 25 June 2018
Available online 27 June 2018

Keywords:
a-C:H
Stress engineering
High hardness
Adhesion

A B S T R A C T

Hydrogenated diamond like carbon (a-C:H) coatings typically have low friction but high residual stress. The hardness which depends on the sp³ proportion increases not only the coating lifetime, but also the residual stress which can lead to easy film delamination especially for thick coatings. In this work, several thick a-C:H coatings (>10 μm) with different stress and hardness are prepared using stress engineering to mitigate stress accumulation while the hardness is retained. A low compressive residual stress of 0.42 – 0.84 GPa is achieved from the 8 μm thick a-C:H coating in addition to a high critical load of 63 – 74 N and hardness of over 26 GPa. The other desirable tribological and anticorrosion properties include a small friction coefficient of 0.13, low wear rate of 1.01 × 10⁻¹⁵ m³/N m, high corrosion potential of - 479.6 mV, as well as small corrosion current density of 1.77 μA/cm².

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Diamond like carbon (DLC) has attracted much commercial interest because of the tribological properties [1–3]. However, the hardness which depends on the sp³ proportion increases not only the coating lifetime, but also the residual stress which may lead to easy and premature delamination, particularly thick DLC coatings. Although DLC coatings with high hardness, excellent adhesion, or low residual stress have been reported [4–6], simultaneous demonstration of high hardness and low residual stress is still challenging [7–9].

Doping with Ti, Al, Ag, and Cu has been demonstrated to relax the structure to reduce the residual stress [10–13] and multilayered structures with metal interlayers have also been suggested [14,15]. However, some of the properties are often compromised, for example, hardness reduced to less than 20 GPa. Despite recent advance, fabrication of thick DLC films (>10 μm) with high hardness and good adhesion is still difficult [16–20]. In our previous studies [21,22], pulsed kV biases were implemented to fabricate 10 μm thick a-C:H (hydrogenated DLC) coatings with adhesion improved to 73 N. It was observed that the bias which provided alternative implantation and deposition during DLC depositing had a significant effect on the residual stress and hardness. With increasing pulsed bias, the residual stress was relieved but the hardness declined as well. Nonetheless, proper stress engineering offers the potential to prepare thick DLC coatings with both high hardness and low stress.

In this study, 12 μm thick DLC coatings with different stress between 0.3 and 2.6 GPa are fabricated using different biases. A stress engineering method is proposed based on the results to construct a gradient multilayer DLC coating, which have both high hardness and good adhesion. Our results show that the residual stress of the 8 μm thick DLC coatings is between 0.42 and 0.84 GPa and the maximum critical load of 74 N is obtained due to the small residual stress. At the same time, the hardness is over 26 GPa and excellent adhesion of 67 N is achieved.

2. Experimental details

A Si (100) wafer(10 mm × 50 mm) with a thickness 500 ± 10 μm and high - speed steel (HSS, Ø30 × 3 mm) were used as substrates. The HSS samples were polished with abrasive SiC papers to 1000 grits and then 1 μm diamond paste on a velvet cloth. The samples were ultrasonically cleaned sequentially in alcohol, acetone, and deionized water for 30 min each and then dried under flowing nitrogen before inserting into a multifunctional plasma surface modification and deposition system (100 cm in diameter and height of 80 cm). After the vacuum chamber was evacuated to a
base pressure of 3×10^{-3} Pa, the substrate was cleaned with Ar ions at a pressure of 0.8 Pa and bias voltage of ~600 V for 20 min. To enhance the adhesion strength with the substrate, an optimized Cr/CrCx/CrC interlayer [21] was produced with Ar (99.999% pure) and C2H2 (99.8% pure) using a Cr target by high-power impulse magnetron sputtering (HiPIMS) with pulses of 750 V, 50 Hz, 300 μs. Finally, the DLC coating was deposited using an anode layer ion source at a power of 300 W at a pressure of 0.5 Pa (10 sccm Ar and 45 sccm C2H2) without sample rotation.

Stress engineering method is proposed to restrain the total residual stress of the coating and ensure the surface hardness by a multilayers coating structure (Fig. 1). The inner layers near the substrate have low residual stress while the top layers possess high hardness. Assuming that the stress accumulates linearly with the substrate hardness, the total residual stress of the whole coatings could be estimated by following equation (Eq. (1)).

$$\sigma = \sum_{i=1}^{n} \sigma_i T_i$$ \hspace{1cm} (1)

Where σ is the total residual stress and σ_i and T_i is the unit thickness's residual stress and thickness of the i-th layer, respectively.

The thickness and morphology were measured by field-emission scanning electron microscopy (FE-SEM, ZEISS SUPRA® 55) and the chemical structure was determined at room temperature by high-resolution confocal Raman scattering (Horiba LabRam HR V1S with a 532 nm laser) and X-ray photoelectron spectroscopy (ESCALAB 250X, Thermo Fisher, England, with a pass energy of 20 eV and analysis time of 50 ms). The microhardness was determined by nanoindentation (NHT2, Anton Paar, Austria) at a maximum load of 25 mN and a scratch test instrument (WS-2005, Zhongke Kaihua Technology, China) was employed to determine the adhesion strength between the film and substrate. The load was progressively increased from 0 N to 100 N at 3 mm/min and 50 N/min. The residual stress was measured by a film stress tester (FST100, SuPro Instruments, China), which is calculated by Stoney equation based on substrate curvature method (SCM) (Eq. (2)).

$$\sigma_f = \frac{E_s t_f^2}{6(1-\mu_s)t_s} \left(\frac{1}{R_1} - \frac{1}{R_0} \right)$$ \hspace{1cm} (2)

Where E_s, μ_s is the Young’s modulus and Poisson’s ratio of the substrate, respectively. t_f, t_s are the thicknesses of thin film and substrate, respectively. R_0 and R_1 are the substrate curvature radius before and after the film deposition. The substrate curvature radius is obtained by Laser Beam Deflection Technique which is particular precise even with tiny substrate deformation. A ball-on disk tester (MFT-5000, Rtec Instruments, America) was utilized to determine the friction coefficients and wear resistance properties at a relative humidity of 65 ± 1% RH and temperature of 25 ± 1 °C. A Φ3 mm Si3N4 ball was used against the coatings at 4 N and 200 rpm with a wear radius of 5 mm. The corrosion resistance properties were determined on an electrochemical workstation (CHI-604E, Shanghai Chenhua).

3. Results and discussion

The hardness and residual stress of the a-C:H coatings fabricated under different biases are presented in Fig. 2. There is an obvious decline in the hardness and compressive residual stress with increasing biases. The largest hardness is 27 GPa and smallest stress is only -0.3 GPa but they are not observed from the same sample. Since the thickness of the coatings is 12 μm, the average stress of each micron a-C:H coatings fabricated with pulsed DC bias of ~800 V, ~3500 V, ~5500 V, ~7500 V and ~9500 V are 0.217 GPa, 0.100 GPa, 0.060 GPa, 0.033 GPa and 0.025 GPa, respectively. Based on these data and the corresponding deposition conditions, the residual stress is modified according to the method listed in Table 1 and a-C:H coatings with various architectures are fabricated by different step-decreasing biases. Consequently, the a-C:H coatings are expected to have low residual stress below 1.09 GPa (details shown in Table 1) while the highest hardness is retained on the coating surface.

The cross-sectional SEM images of the samples with different architectures are presented in Fig. 3. The coatings have similar thickness, about 8 μm for the a-C:H coatings and 1.0 μm for the Cr/CrCx/CrC interlayer which forms a continuous transition from the substrate to the a-C:H coatings without significant lattice mismatch as demonstrated by L.L. Liu et al. [21]. The a-C:H layers have a dense and amorphous structure without obvious grain boundaries, but some fuzzy interfaces are observed from the a-C:H layers because of the bias change during deposition. To differentiate the important top a-C:H layer (fabricated at ~800 V) and the bottom a-C:H layer (fabricated at ~9500 V), the interfaces are marked in Fig. 3. As shown in Table 1, the thickness of the bottom a-C:H layer with the smallest stress is between 4 μm and 1 μm and that of the top a-C:H layer with the highest hardness is between 1 μm and 4 μm depending on the deposition time.

Fig. 4(a) depicts the Raman scattering spectra of the four samples with different architectures. The peaks can be deconvoluted into the D and G peaks using the Gaussian fitting as shown in Table 2. Few differences can be observed from the peak position, the FWHM (full-width at half-maxima), and intensity ratio of the D

![Fig. 1. The diagram of stress and hardness design.](image)

![Fig. 2. Hardness and residual stress of the 12 μm thick a-C:H coatings fabricated at different biases.](image)
Table 1
Important instrumental parameters for fabrication of the a-C:H coatings.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Period 9500 V</th>
<th>Period II 7500 V</th>
<th>Period III 5500 V</th>
<th>Period IV 3500 V</th>
<th>Period V 800 V</th>
<th>Expected Residual Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 μm</td>
<td>1 μm</td>
<td>1 μm</td>
<td>1 μm</td>
<td>1 μm</td>
<td>0.51 GPa</td>
</tr>
<tr>
<td>2</td>
<td>3 μm</td>
<td>1 μm</td>
<td>1 μm</td>
<td>1 μm</td>
<td>2 μm</td>
<td>0.70 GPa</td>
</tr>
<tr>
<td>3</td>
<td>2 μm</td>
<td>1 μm</td>
<td>1 μm</td>
<td>1 μm</td>
<td>3 μm</td>
<td>0.89 GPa</td>
</tr>
<tr>
<td>4</td>
<td>1 μm</td>
<td>1 μm</td>
<td>1 μm</td>
<td>1 μm</td>
<td>4 μm</td>
<td>1.09 GPa</td>
</tr>
</tbody>
</table>

Fig. 3. SEM cross-sectional images: (a) Sample 1, (b) Sample 2, (c) Sample 3, (d) Sample 4.

Fig. 4. Bonding structures: (a) Raman scattering spectra; (b) XPS of sample 4 at different depths; (c) sp³ contents of different samples at different depths.
and G peaks, indicating that the sp³ content in the top a-C:H layer is similar due to the same depositing parameters [23,24]. The depth profiles of the a-C:H coatings are obtained by monitoring the C1s peak during argon sputtering by XPS and the depth profile of sample 4 is shown in Fig. 4(b) as an example (those of other three samples are similar). The C1s spectra show large asymmetrical peaks and obvious shifts towards lower binding energy with depth indicating decreasing sp³ content [25,26]. The spectra are deconvoluted into two peaks assigned to the C-C sp² hybridized carbon atoms (284.3 eV) and C-C sp³ hybridized carbon atoms (285.2 eV). The calculated sp³ contents at different depths in Fig. 3(c) decreases with depth corresponding to the applied bias during fabrication [22].

The residual stress is measured and compared with the expected stress calculated by simply superposition according to the stress engineering schemes (Fig. 5). The residual stress, which is compressive in all of the a-C:H coatings, increases slightly from 0.42 GPa to 0.84 GPa with increasing thickness of the top hard a-C:H layer. With enhancement by the pulsed bias, the decreased sp³ fraction and effective dissipation of excess heat generated by the ion impingement relax the compressive stress [16,27]. Therefore, a larger percentage of the top a-C:H layer brings larger stress in the whole DLC coatings attributed to the residual stress evolution between samples. It is noted that the measured residual stress is less than the expected one. This phenomenon is mainly attributed to the two assumes in the stress engineering: one is that the ignored stress difference occurred between the a-C:H samples with different bias and the Cr/CrCx/CrC interlayer and the other one is the different stress relaxation effect between the gradient a-C:H coatings and the single-phase a-C:H layer [28,29].

As reported previously, stress affects the adhesion strength between the coating and substrate. The adhesion strength of the a-C:H coatings is determined by scratch tests in which five scratches are made on each sample but no significant difference (± 1 N) is observed as shown in Fig. 6. The critical load between the coating and substrate decreases from 74 N to 63 N when the stress of the

<table>
<thead>
<tr>
<th>Sample</th>
<th>D band position (cm⁻¹)</th>
<th>D FWHM (cm⁻¹)</th>
<th>G band position (cm⁻¹)</th>
<th>G FWHM (cm⁻¹)</th>
<th>ID/IG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1343.64</td>
<td>277.92</td>
<td>1534.73</td>
<td>155.81</td>
<td>0.610</td>
</tr>
<tr>
<td>2</td>
<td>1343.61</td>
<td>277.89</td>
<td>1534.69</td>
<td>154.97</td>
<td>0.610</td>
</tr>
<tr>
<td>3</td>
<td>1343.20</td>
<td>281.13</td>
<td>1534.51</td>
<td>156.9</td>
<td>0.609</td>
</tr>
<tr>
<td>4</td>
<td>1344.23</td>
<td>281.91</td>
<td>1534.99</td>
<td>155.1</td>
<td>0.610</td>
</tr>
</tbody>
</table>

Fig. 5. Residual stress of different samples.

Fig. 6. Scratch test results of the a-C:H coatings.

Fig. 7. Nanoindentation results: (a) Load versus displacement curves and (b) Hardness and elastic moduli.
coating increases from \((0.42 \pm 0.03)\) GPa to \((0.84 \pm 0.03)\) GPa with increasing the thickness of the top a-C:H layer, which has the largest stress for deposition at \(-800\) V.

The hardness and elastic modulus of the a-C:H coatings deposited under different step-decreasing biases are determined by nanoindentation and shown in Fig. 7. The maximum indentation load is 25 mN. As shown in Fig. 7(a), the maximum penetration depth decreases with increasing thickness of the top a-C:H layer fabricated at \(-800\) V, suggesting gradually increasing coating hardness (H) and elastic modulus (E). The hardness and elastic modulus determined from the load/displacement curves are presented in Fig. 7(b). The largest hardness is 26.7 GPa which is similar to that of the DLC coating prepared at a bias of \(-800\) V as shown in Fig. 2. The hardness of the other samples is smaller because of the thinner top hard layer and influence of the relatively soft bottom layers \[30\]. Generally, the indentation depth cannot exceed the total film thickness by 10\% in order to exclude the substrate effects \[31–33\]. The thicknesses of the top a-C:H layer in the two softer samples are 1 \(\mu\)m and 2 \(\mu\)m and 10\% of them are smaller than the penetration depths of about 290 nm and 275 nm thus inducing the unavoidable “substrate effect” from the soft bottom layer. Since the top a-C:H layers are about 3 \(\mu\)m and 4 \(\mu\)m thick in the other two samples, no obvious difference can be observed from the hardness and modulus.

The friction coefficients and wear rates of the DLC coatings are determined by ball-on-disk tests with a Si\(_3\)N\(_4\) counterpart for 2 h and the results are presented in Fig. 8 which also shows the friction coefficient of the HSS substrate for comparison. The fluctuation in the friction coefficients is much smaller than that of HSS and it stabilizes at about 0.13 until the end of the test indicating no destruction of the coatings. Fig. 8(b) shows the wear rates calculated by the wear volume. Compared to the poor wear resistance of HSS with a high wear rate of \((150.3 \pm 0.5) \times 10^{-15} \text{m}^3/\text{N} \cdot \text{m}\), the four a-C:H samples exhibit much smaller wear rates of \((1.95 \pm 0.3) \times 10^{-15}\), \((1.31 \pm 0.4) \times 10^{-15}\), \((1.01 \pm 0.3) \times 10^{-15}\), and \((1.24 \pm 0.3) \times 10^{-15} \text{m}^3/\text{N} \cdot \text{m}\), respectively, and the difference among the samples is minimal. The significantly enhanced wear resistance can be ascribed the large surface hardness and increased adhesion as a result of stress engineering.

The electrochemical corrosion behavior of the a-C:H samples and stainless steel (SS) substrate are investigated by potentiodynamic tests. The polarization curves and details about the corrosion current density (\(I_{\text{corr}}\)) and corrosion potential (\(E_{\text{corr}}\)) are shown in Fig. 9 and Table 3. Compared to the corrosion behavior of the SS substrate, all the a-C:H coatings show smaller \(I_{\text{corr}}\) and larger \(E_{\text{corr}}\), indicating significantly improved corrosion resistance. As for the different architectures of the a-C:H coatings, higher \(E_{\text{corr}}\) and lower \(I_{\text{corr}}\) are obtained for thicker hard a-C:H layers. Owning to the large sp\(^3\) content which is closely related to the corrosion resistance \[34\], the hardest sample has the largest \(E_{\text{corr}}\) of \(-479.6\) mV and smallest \(I_{\text{corr}}\) of \(1.77 \mu\)A/cm\(^2\).

Table 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>(E_{\text{corr}}) (mV)</th>
<th>(I_{\text{corr}}) ((\mu)A/cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>.1025</td>
<td>45.9</td>
</tr>
<tr>
<td>1</td>
<td>.639.2</td>
<td>7.78</td>
</tr>
<tr>
<td>2</td>
<td>.619.8</td>
<td>4.23</td>
</tr>
<tr>
<td>3</td>
<td>.572.4</td>
<td>3.76</td>
</tr>
<tr>
<td>4</td>
<td>.479.6</td>
<td>1.77</td>
</tr>
</tbody>
</table>

4. Conclusion

In order to fabricate a-C:H coatings with both high adhesion and hardness, a stress engineering scheme is designed. The residual stress of the 8 \(\mu\)m thick a-C:H coating is reduced to 0.42—0.84 GPa while high adhesion of to 63—74 N is observed. The surface...
hardness exceeds 26 GPa, the friction coefficient is 0.13, and the wear rate is \(1.01 \times 10^{-15}\) m\(^3\)/N·m. In addition, excellent corrosion resistance as manifested by a large \(E_{\text{corr}}\) of -479.6 mV and small \(i_{\text{corr}}\) of 1.77 \(\mu\)A/cm\(^2\) is achieved. The stress engineering strategy can be extended to the other types of hard coatings to extend the service lifetime of engineering components.

Acknowledgements

This work was financially supported by Guangdong Science and Technology Research Grants (No. 2015B080927003), Shenzhen Science and Technology Research Grants (JCYJ20150828093127698 and GJHS20170313150213648), City University of Hong Kong Strategic Research Grant (SRG) No. 7004644, City University of Hong Kong Applied Research Grant (ARG) No. 9667122, as well as Hong Kong Research Grants Council (RGC) General Research Funds (GRF) No. CityU 11301215 and 11205617.

References