Cationic fluorine-containing amphiphilic graft copolymers as DNA carriers

Sheng-Dong Xiong, Ling Li, Jiang Jiang, Li-Ping Tong, Shuilin Wu, Zu-Shun Xu, Paul K. Chu

A Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, HuBei University, Wuhan 430062, China
b Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

ABSTRACT

A series of cationic fluorine-containing amphiphilic graft copolymers P(HFMA-St-MOTAC)-g-PEG comprising poly(hexafluorobutyl methacrylate) (PHFMA) poly(methacrylic oxyethyl trimethylammonium chloride) (PMOTAC) polystyrene (PSt) backbones and poly(ethylene glycol) (PEG) side chains are synthesized as a type of non-viral gene vector. The copolymers self-assemble into spherical micelles in the aqueous media and turbidity and cytotoxicity measurements show that those micelles have excellent dispersive stability and low cytotoxicity. The interactions between the copolymers and calf-thymus DNA are studied by fluorescence spectroscopy and viscosity. The former discloses electrostatic interaction, hydrophobic interaction, and hydrogen bonding in the copolymer/DNA system, whereas the latter indicates that these graft copolymers can bind DNA via the electrostatic and classical intercalation modes. The DNA-binding capacity determined by the gel retardation assay and UV-visible spectrophotometry shows that the copolymers have good binding capacity to DNA and a high charge density or HFMA content in the copolymers bode well for DNA-binding. Transmission electron microscopy, photon correlation spectroscopy, and zeta potential data reveal that stable colloidal complexes (particles) can form easily between the copolymer micelles and DNA. Our results suggest that the copolymers are a promising non-viral vector in a gene delivery system.

1. Introduction

In recent years, gene therapy has attracted much attention for its pharmaceutical applications in treating chronic diseases, immunodeficiency, genetic disorders and cancer [1–3]. There are two categories of gene delivery vectors: viral and non-viral vectors [4,5]. Viral gene vectors have high transfection efficiency but suffer from many disadvantages such as risks of strong immunogenicity, inflammatory response, recombination, and carcinogenicity [6,7]. Fast progress in clinical gene therapy has significantly motivated the development of safe and efficient non-viral gene delivery systems which may substitute for viral vectors which still possess inherent safety problems [8,9]. Cationic lipids and cationic polymers are one of the most widely used and extensively studied non-viral vectors [10,11]. Compared to cationic lipids, cationic polymers are stable, easy to manipulate, easy to self-assemble with DNA, and more economical [12].

One of the major drawbacks of cationic polymers non-viral vector based gene delivery is the toxicity related to the positive charge of polymers [13] such as polyethylenimine (PEI) [8,12] and trimethyl chitosan (TMC) [14]. In addition, the strong electrostatic interaction between cationic polymer and DNA deters gene dissociation from its carrier inside cells impeding the access of RNA polymerase to DNA. Consequently, the gene expression level is limited and the high charge density may combine membranes and destroy cell metabolism [15]. To circumvent the problems described above, one rational way is to graft hydrophilic or hydrophobic side chains to cationic polymer backbones to form amphiphilic copolymers [11,14]. These amphiphilic copolymers self-assemble into a nanosize and core–shell micelle architecture in selective solvents. Compared to water-soluble polycations, such self-assembled micellar nanoparticles as non-viral vector have several advantages. First of all, they are able to load DNA and hydrophobic anti-cancer drugs simultaneously to offer potential synergistic effect in cancer therapy [16]. Secondly, instead of mixing water-soluble polycations and DNA to form complexes, which may result in the formation of uncontrollable large particles, micellar nanoparticles with positive charge allow nucleic acid loading after nanoparticle formation and have long circulation time in the bloodstream [17]. This is believed to benefit the construction of size-controllable and monodispersed nucleic acid loaded nanoparticles which may display unique advantages in vivo.
micelles (<200 nm) reduce non-selective uptake by the reticuloendothelial system (RES) and exhibit enhanced permeability and retention effects (EPR effect) at solid tumor tissue sites [18,19]. In addition, this preparation method can be upscaled to address the large quantity required by therapeutic applications. Several cationic graft or block polymers micelles such as poly (methacryloxy triethylammonium chloride)-graft-poly(oxethylene) (PMOTAC-g-POE) [15], trimethyl chitosan-poly(N-isopropylacrylamide) (TMC-g-PNIPAAm) [14], poly(ε-l-lysine)-graft-polyethylene glycol (PLL-g-PEG) [20], polyethyleneimine -graft-polyethylene glycol (PEI-g-PEG) [21], folate-polyethyleneimine-block-poly(ethylene glycol) (FOL-PEI-b-PEG) [12] have been used as non-viral gene vectors. The hydrophobic force is the main one forming the micelles in an aqueous solution. However, because the hydrophobic force resulting from the hydrophobic chains of the amphiphilic copolymers is weak, the stability of the micelles is not adequate in many applications [22]. These unstable micelles are thus not suitable for compressing DNA into small spherical particles [23]. Big particles cannot be easily endocytosed by cells leading to low transfection efficiency for DNA [8]. Therefore, the dispersive stability of micelles is another bottleneck that needs to be circumvented. In this respect, several ways to stabilize the micelles including shell crosslinking of micelles have been investigated [24,25]. However, these approaches may adversely affect the micellar properties leading to low delivery efficiency. Owing to the unique characteristics of fluoropolymers such as high hydrophobicity, high thermal and mechanical stability, gas-dissolving capacity, high fluidity, low dielectric constants, oil-and-water-repellency, and very interesting surface properties [26–28], attention has recently been paid to amphiphilic copolymers with fluorocarbon–hydrocarbon hybrid architectures. Among these characteristics, the most intriguing are the oleo- and hydrophobicity and high fluidity of fluorine-containing polymers. They have been studied from the perspective of biomedical applications, for instance, blood substitutes, gas carriers, bioconversion, extraction, and so forth and cannot be achieved by non-fluorinated copolymers [29–32]. Furthermore, because of the oleo- and hydrophobicity of fluorine-containing amphiphilic copolymers, they have very low critical micelle concentrations (CMC) compared to other amphiphilic copolymers [27]. Hence, they have a strong tendency to self-aggregate into stable, well-organized micelles, and these micelles may have unique advantages in drug delivery because they can transmit both hydrophobic and fluorophilic molecules at the same time to the target sites due to the high fluidity, hydrophobicity, and water- and oil-repellency of fluoropolymers [33,34].

Poly(ethylene glycol) (PEG) is widely used as the hydrophilic side chains in amphiphilic graft copolymers. It is a low cost commercial product that possesses some unique and outstanding properties such as hydrophilicity, biocompatibility, nontoxicity, lack of immunogenicity, metal complexing ability, as well as solubility in water and organic solvents. Recently, PEG has been widely applied in gene delivery systems. The presence of PEG on the surface of gene vectors can enhance biocompatibility, reduce cytotoxicity, and protect DNA from degradation [12,35,36].

There have been few reports on the use of self-assembled cationic fluorine-containing amphiphilic copolymer micelles in DNA delivery. The present study aims at the synthesis of cationic fluorine-containing amphiphilic copolymers P[HFMA-St-MOTAC] g-PEG with hydrophobic poly(hexafluorobutyl methacrylate) (PHFMA), poly(methacryloxy triethylammonium chloride) (PMOTAC), polystyrene backbones and poly(ethylene glycol) (PEG) side chains. Because of the hydrophobic characteristic of the fluorinated segment which induces the micellar core formation and stabilizes the nanoparticles, the amphiphilic graft copolymer has a good and stable self-assembled morphology in aqueous media. Meanwhile, on account of the positively charged MOTAC segment, it serves as a DNA-binding site, and hydrophilic poly(ethylene glycol) (PEG) can also potentially protect the DNA and extend blood circulation in systemic administration. These unique tri-layered cationic fluorine-containing amphiphilic graft copolymer micelles are used as a non-viral gene vector. The dispersive stability of these micelles in aqueous media is evaluated and the invitro cytotoxicity of the resulting copolymers is examined. The physicochemical characteristics of the copolymer/DNA complexes are analyzed by fluorescence, viscosity, agarose gel electrophoresis, UV spectrophotometry, particle size, transmission electron microscopy, and zeta potential measurements.

2. Materials and methods

2.1. Materials

2.2.2.3.4.4-Hexafluorobutyl methacrylate (HFMA) was purchased from Xeogia Fluorine–Silicon Chemical Company (Harbin, China, chemical purity) and distilled under reduced pressure before use. Methoxy poly(ethylene glycol) (MPEG) (average molecular weight of 5000 g/mol) was obtained from Aldrich and purified by vacuum-drying at room temperature for 24 h before use. An aqueous solution (75 wt%) of methacryloxy triethylammonium chloride (MOTAC) was purchased from Aldrich and used as received. Tetrahydrofuran (THF) purchased from Shanghai Chemical Reagents Co. (Shanghai, China, chemical purity) was used as the solvent of initially dried THF at least overnight and then refluxed over sodium wire for 3 days before use. Analytical grade 2,2′-azobisobutyronitrile (AIBN) was purchased by recrystallization in ethanol. Sodium hydride (NaH, Nacalai, Kyoto, Japan) and p-Chloromethylyltrimethylammonium (CMSt) supplied by Acros Organics (>95%, Belgium) were used without further purification.

Dublecco’s modified Eagle medium (DMEM) was purchased from Invitrogen Corp. Fetal bovine serum (FBS) was purchased from Hyclone. MTI was purchased from Sigma (St. Louis, MO, USA). Two different types of DNAs, pEGFP-C1 plasmid (gel retardation assay experiments), and calf-thymus DNA (all other experiments) were used in the study. Calf-thymus DNA was purchased from Sigma (St. Louis, MO, USA). The stock solution of calf-thymus DNA was prepared by dissolving DNA in doubly distilled water at 0–4 °C. Plasmid pEGFP-C1 encoding a red-shifted variant of wild-type green fluorescent protein (GFP) was purchased from Encotech, Mountain View, CA, USA. pEGFP-C1 plasmids were amplified in the Luria–Bertani medium at 37 °C overnight at 250 rpm. Then the plasmids were purified by means of EndoFree plasmid purification. The purified plasmid was diluted by tris-EDTA buffer solution and stored at −20 °C. All other reagents and solvents were used as received without further purification. Distilled water was used in all the preparation and characterization processes.

2.2. Synthesis of P(HFMA-St-MOTAC)-g-PEG

2.2.2. Synthesis of SPEC macromonomers

MPEG (10,000 g, 2 mmol) was dissolved in dry THF (100 mL) and NaH (0.072 g, 3 mmol) was added by stirring at 45 °C for 2 h. After CMSt (1.220 g, 8 mmol) was added into the flask, the reaction was conducted at 35 °C for 24 h. The products were precipitated using a large amount of diethyl ether and filtered. They were purified by dissolving in CHCl3 and filtered to remove any insoluble impurities. Finally, the products were precipitated using cold diethyl ether, filtered, and dried under high vacuum [37,38]. The synthesis route of the SPEG macromonomers is illustrated in Scheme 1. The yield was calculated from the weight of the dry SPEG macromonomers obtained. The composition and content of the terminal vinyl group in SPEG macromonomers was determined according to the 1H NMR spectrum.

2.2.2.2. Synthesis of P(HFMA-St-MOTAC)-g-PEG graft copolymer

The graft copolymers were synthesized via conventional free radical polymerization in THF. In a typical reaction, SPEG macromonomer (1.420 g, 0.277 mmol), HFMA (2.400 g, 9.600 mmol), MOTAC (0.180 g, 0.867 mmol), AIBN (0.024 g, 0.146 mmol), and THF (20 mL) were added into a 50 mL round bottom flask containing a magnetic stirrer. The flask was then deoxygenated under reduced pressure and backfilled with nitrogen several times. Polymerization was carried out at 75 °C for 20 h. The product was isolated by evaporating the solvent in a rotary evaporator and then the mixture was precipitated in n-hexane. After filtration, the precipitate was purified by re-precipitation repeatedly in n-hexane. The obtained product was dried under vacuum at 35 °C for 72 h. Polymerization conversion was determined by gravimetric analysis. The product was analyzed by FTIR, 1H NMR, and 13C NMR spectroscopy. The detailed polymerization conditions are listed in Table 1.
2.3. Characterization

FTIR spectra of macromonomer and graft copolymer were acquired on the Perkin–Elmer Spectrum one Transform Infrared Spectrometer (Perkin–Elmer, USA). The polymer films were cast onto KBr disks from tetrahydrofuran solutions. The FTIR spectra were recorded from 4000 to 400 cm⁻¹. 1H NMR and 19F NMR spectra were recorded using a UNITY INVOA-600 MHz spectrometer (Varian, USA) at 20 °C with CDCl₃ as the solvent. The content of the terminal vinyl group in the PEG macromonomer was quantified by means of 1H NMR according to the peak intensity ratio of the –CH₂– protons to CH₃O– proton. The HFMA and MOTAC contents in the graft copolymers were calculated by the 1H NMR peak intensity ratios of the –CH₂– protons of HFMA, –N(CH₃)₃Cl protons of MOTAC and the CH₃O– proton of the PEG macromonomer. The molecular weight and molecular weight distribution of SPEG macromonomer and P(HFMA-St-MOTAC)-g-P(PEG) were determined by a Waters 150-C gel permeation chromatograph (GPC) at 30 °C. THF was used as the eluent at a flow rate of 1.0 mL min⁻¹, and polystyrene standards were used for calibration.

2.4. Preparation of graft copolymer solution and copolymer/DNA complexes

The aqueous stock solutions of the copolymers were prepared by dissolving the pure copolymers in distilled water. The solutions were obtained after overnight stirring at room temperature. In some cases, ultrasonic treatment for a few minutes was carried out in addition to stirring in order to obtain clear solutions. The freshly prepared stock solutions were diluted to different concentrations in all other experiments. All the copolymer/DNA complexes were prepared freshly before use.

2.5. Determination of critical micelle concentration (CMC)

The critical micelle concentrations (CMC) for the different copolymers were determined using the fluorescence probe technique. Nile Red was chosen as the hydrophobic dye constituting the micellar payload because its fluorescence is negligible in an aqueous solution, but it is known to increase substantially in a hydrophobic environment found in some membranes or micelles. The Nile red stock solution (2 g/L) was prepared in distilled water and stored until used. The Nile red samples for spectroscopic analysis were prepared as follows. A Nile red stock solution (5 g/L) was added to each well to achieve a final concentration of 3 mg/mL (viscosity studies) or to 90 mg/L (all other experiments). The aqueous stock solutions of the copolymers were prepared by dissolving the pure copolymers in distilled water. The solutions were obtained after overnight stirring at room temperature. In some cases, ultrasonic treatment for a few minutes was carried out in addition to stirring in order to obtain clear solutions. The freshly prepared stock solutions were diluted to different concentrations in all other experiments. All the copolymer/DNA complexes were prepared freshly before use.

2.6. In vitro cytotoxicity test

The relative cytotoxicity of P(HFMA-St-MOTAC)-g-P(PEG) graft copolymer was measured by an MTT viability assay against CHO (Chinese Hamster Ovary) cells. The cells were seeded in 96-well plates at 3000 cells/well in 200 μL of the complete medium containing DMEM-F12 (1:1) supplemental medium and 10% fetal bovine serum and incubated at 37 °C in a 5% CO₂ atmosphere for 24 h. The culture medium was the removed and the P(HFMA-St-MOTAC)-g-P(PEG) graft copolymer solutions (dose diluted by complete medium) at different concentrations (0–1 g/L). At the end of 24 h of incubation, the medium was removed and 25 μL of the MTT stock solution (5 g/L in PBS) was added to each well to achieve a final concentration of 1 g/L. The cultures were incubated for another 4 h. The supernatant was removed and 100 μL DMSO was added to dissolve the formazan crystals converted by the catalysis of mitochondrial dehydrogenase from a water-soluble tetrazolium salt. The absorbance of this solution was measured at 570 nm using a Microplate reader. The relative cell viability was calculated by the following equation: relative cell viability (%) = (ODtreated/ODcontrol) × 100, where ODcontrol was obtained in the absence of copolymers and ODtreated was obtained in the presence of copolymers.

2.7. Fluorescence

The fluorescence properties of a series of graft copolymers in the absence and presence of DNA (without other buffer solutions) were studied on a RF-540 (Hitachi high-technologies corporation, Tokyo, Japan) spectrophotometer. The fluorescence emission spectra were recorded in the wavelength range 320–520 nm by exciting the P(HFMA-St-MOTAC)-g-P(PEG) at 300 nm. Both the excitation and emission slits were 5 nm.

2.8. Viscosity measurements

Viscosity measurements were carried out using an Ostwald’s capillary viscometer maintained at a constant temperature of 30.0 ± 0.1 °C in a thermostatic bath. Several time readings were obtained at each titration point with a digital stopwatch and an average flow time was calculated. The data were presented as (η/η₀) vs. the binding ratio [40], where η is the viscosity of DNA in the presence of the graft copolymers (without other buffer solutions) and η₀ is the viscosity of DNA alone. The viscosity values were calculated from the observed flow time of DNA containing solution (t > 10 s) corrected for the flow time of the buffer alone (t₀), η = t – t₀.

Table 1

<table>
<thead>
<tr>
<th>Sample code</th>
<th>SPEG (g)</th>
<th>HFMA (g)</th>
<th>MOTAC (g)</th>
<th>Conversion (%)</th>
<th>WL% PMFA (theoretical)</th>
<th>WL% MOTAC (theoretical)</th>
<th>WL% PMFA (1H NMR results)</th>
<th>WL% MOTAC (1H NMR results)</th>
<th>Mw × 10⁵ (Mw/Mn)ᵇ</th>
<th>CMC (g/L)ᶜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(FEG-F48M2.1)</td>
<td>1.912</td>
<td>2.000</td>
<td>0.088</td>
<td>97.9</td>
<td>50</td>
<td>2.2</td>
<td>48</td>
<td>2.1</td>
<td>1.62(1.71)</td>
<td>6.51 × 10⁻²</td>
</tr>
<tr>
<td>2(FEG-F61M2.1)</td>
<td>1.436</td>
<td>2.480</td>
<td>0.084</td>
<td>95.6</td>
<td>62</td>
<td>2.1</td>
<td>61</td>
<td>2.1</td>
<td>1.04(1.86)</td>
<td>1.11 × 10⁻²</td>
</tr>
<tr>
<td>3(FEG-F67M4.2)</td>
<td>1.112</td>
<td>2.800</td>
<td>0.088</td>
<td>93.6</td>
<td>70</td>
<td>2.2</td>
<td>67</td>
<td>2.2</td>
<td>0.78(1.94)</td>
<td>0.41 × 10⁻²</td>
</tr>
<tr>
<td>4(FEG-F60M4.4)</td>
<td>1.420</td>
<td>2.400</td>
<td>0.180</td>
<td>95.0</td>
<td>60</td>
<td>4.5</td>
<td>60</td>
<td>4.5</td>
<td>1.02(1.79)</td>
<td>1.09 × 10⁻²</td>
</tr>
<tr>
<td>5(FEG-F61M6.5)</td>
<td>1.212</td>
<td>2.520</td>
<td>0.268</td>
<td>95.4</td>
<td>63</td>
<td>6.7</td>
<td>61</td>
<td>6.5</td>
<td>0.96(1.99)</td>
<td>1.10 × 10⁻²</td>
</tr>
</tbody>
</table>

ᵃ NMR results.
ᵇ GPC results.
ᶜ Fluorescence measurements results.
2.9. Gel retardation assay

The DNA condensing ability of P(HFMA-St-MOTAC)-g-PEG was examined by agarose gel electrophoresis. The complexes at different weight ratios were prepared by adding an appropriate volume of P(HFMA-St-MOTAC)-g-PEG solution to 100 ng of pEGFP-C1 (150 mg/mL in 40 mM Tris-HEP buffer solution). The complexes were incubated at 37 °C for 30 min. Afterwards, the complexes were electrophoresed in the 0.7%(w/v) agarose gel containing GelRed (an ethidium-bromide (EtBr) containing 1%) and with Tris-acetate (TAE) running buffer at 80 V for 100 min. The DNA was visualized with a UV lamp on a Vilber Lourmat imaging system (France).

2.10. UV-visible spectroscopy

The DNA-binding ability of P(HFMA-St-MOTAC)-g-PEG was determined by measuring the intrinsic absorption peaks at 260 nm using a Perkin–Elmer lambda 17 UV–vis spectrophotometer at room temperature. In a typical example, the appropriate volume of DNA solution (90 mg/mL) was added to a fixed amount (1 mL) of polymer solution (0.12 g/L). After 24 h of incubation at room temperature, the complexes were centrifuged at 12 000 rpm for 10 min to precipitate the micelles. The amount of unabsorbed DNA was determined using UV– vis spectrophotometer by incubating 50 μL of the supernatant. All the measurements were made in a quartz cuvette (1 cm in width) in the wavelength range of 200–400 nm and the absorption peaks at 260 nm for DNA was used. Deionized water/DNA were used in the comparative experiments.

2.11. Transmission electron microscopy

The morphology of the graft copolymer micelles and the morphology of graft copolymer/DNA complexes were characterized with TEM (Tecni G20, FEI Corp. USA). The sample was stained with phospho-tungstic acid (pH = 6.5), and a drop of the sample (concentration of graft copolymer solution was above CMC) was placed on a Formvar-coated copper grid which was dried in air. The TEM images were obtained at 25 °C at an electron acceleration voltage of 80 kV.

2.12. Particle size measurement

The average hydrodynamic radius and size distribution of the copolymer micelles and graft copolymer/DNA complexes were measured by photon correlation spectroscopy (PCS) (AutoSizer Loc-Fc-963, Malvern Instrument). The experiments were performed using the graft copolymer solutions having concentration above CMC. The samples prepared by filtering the solutions through cellulose acetate filters with 0.2 μm pore size were directly poured into a cuvette. The cuvette was then set inside a sample holder. Measurements were made at an angle of 90° with 679 nm wavelength laser light. All the data were averaged from 3 to 5 parallel measurements.

2.13. Stability of copolymer micelles and copolymer/DNA complex particles

The stability of the copolymer micelles in aqueous solutions was evaluated by turbidity measurement and monitoring the time-dependent changes in the micelle size with photon correlation spectroscopy (PCS). The copolymer solutions with the concentrations above CMC were used in this evaluation. The copolymer micelle solutions were incubated at 37 °C for certain durations (1–15 days), followed by turbidity measurement of the suspension at 550 nm. The stability of copolymer/DNA complex particles was examined by monitoring the time-dependent changes in the micelle size (with photon correlation spectroscopy (PCS)) and zeta potentials of these particles.

2.14. Zeta potential measurement

The zeta potentials of the graft copolymer/DNA complexes were measured using Nano-ZS ZEN3600 (Malvern Instruments, Southborough, MA) based on the principle of phase analysis light scattering. The zeta potentials quoted were averages obtained from at least six measurements over duplicate samples.

3. Results and discussion

3.1. Synthesis and characterization of SPEG macromonomer and P(HFMA-St-MOTAC)-g-PEG graft copolymers

Recent development of macromonomer techniques has enabled the preparation of a variety of graft copolymers with a well-defined structure. In this work, we prepare methoxy poly(ethylene glycol) macromonomer (SPEG) with the p-vinylbenzyl end group. The synthesis route of the SPEG macromonomer is illustrated in

Table 2
Quantitative results of the SPEG macromonomer.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mn/(theoretical)</th>
<th>Mw/Mn(Mw/a)a</th>
<th>Amount of vinyl group (%)b</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEG</td>
<td>5116</td>
<td>5340(1.24)</td>
<td>85</td>
<td>96.8</td>
</tr>
</tbody>
</table>

* a GPC results.
* b NMR results.

Scheme 1. There is no polymerization reaction during the macromonomer preparation at 35 °C as revealed by the nature of the product as well as 1H NMR and FTIR spectra. The quantitative results are given in Table 2. It is obvious that the P(HFMA-St-MOTAC)-g-PEG graft copolymer can be easily obtained via copolymerization of the SPEG macromonomer, MOTAC, and HFMA using THF as the solvent and AIBN as the initiator. The chemical structure and molecular weight of the graft copolymers and SPEG macromonomer will be discussed in detail later in this paper.

Fig. 1 shows the FTIR spectra of (A) MPEG, (B) SPEG macromonomer, and (C) P(HFMA-St-MOTAC)-g-PEG. The FTIR spectrum of the MPEG exhibits the characteristic strong absorption of ether linkage at 1120 cm⁻¹ and hydroxy group at 3500 cm⁻¹. Strong absorption by methylene can also be observed at 2800–3000 cm⁻¹. Compared to the spectrum of MPEG, the characteristic strong absorption of the hydroxy group at 3500 cm⁻¹ decreases significantly and the characteristic peak of the double bond at 1640 cm⁻¹ is also observed from the SPEG macromonomer. Those at 3000 cm⁻¹, 790 cm⁻¹, 1800–1400 cm⁻¹ observed from the SPEG macromonomer (B) are the characteristic absorption peaks of the substituting benzene ring. These modes confirm that the MPEG has been successfully converted into the SPEG macromonomer which contains the double bond and can act as the macromonomer for the synthesis of P(HFMA-St-MOTAC)-g-PEG.

The FTIR spectrum of the P(HFMA-St-MOTAC)-g-PEG copolymer is shown in Fig. 1(C). The characteristic absorption of the double bond at 1640 cm⁻¹ disappears, indicating that the monomers have polymerized. The characteristic stretching peak of the C–O group appears at 1700 cm⁻¹ because the HFMA and MOTAC contain C=O groups. The absorbance values at 1453 cm⁻¹ [–N–(CH3)3] are characteristic of the MOTAC units. In comparison with the FTIR spectrum of the SPEG macromonomer (B), the FTIR absorption peaks at 1000–1260 cm⁻¹ are wider and blunter because of the overlap between the stretching vibration absorption of the C–F

Fig. 1. FTIR spectra of (A) MPEG (B) SPEG, and (C) P(HFMA-St-MOTAC)-g-PEG.
bond at 1100–1260 cm$^{-1}$ and the stretching vibration absorption of the C–O–C bond at 1250 cm$^{-1}$. This result proves that HFMA, MOTAC and SPEG participate in the polymerization.

The 1H NMR spectrum of the SPEG macromonomer and peak assignments is presented in Fig. 2(A). The broad peak at 3.65 ppm (b) is assigned to –CH$_2$CH$_2$O–, the singlet at 3.38 ppm (a) is assigned to CH$_3$O–, the singlet at 4.58 ppm (c) can be assigned to –CH$_2$–, the peak at 7.4 ppm (d) corresponds to the phenyl protons of the styrene units, and the characteristic peaks at approximately 6.71–5.22 ppm (e,f) are attributed to –CH=CH$_2$. The 1H NMR spectrum clearly demonstrates that the SPEG macromonomer is obtained. The content of the terminal vinyl group in the SPEG macromonomer is quantitatively determined by the peak intensity ratio of the methylene protons 4.58 ppm (c) to the terminal methoxy protons 3.38 ppm (a). The amount of the vinyl group in the macromonomers is calculated to be 85% and the yield of the SPEG macromonomer is 96.8%. The SPEG macromonomer possesses considerably high active functionality and the quantitative results are given in Table 2.

By controlling the experimental protocols, a series of graft copolymers are obtained via conventional free radical polymerization using THF as the solvent and AIBN as the initiator. The 1H NMR spectrum and assignment of the signals derived from of a typical graft copolymer are shown in Fig. 2(B). In comparison with the 1H NMR spectrum of the SPEG macromonomer shown in Fig. 2(A), several new peaks from the graft copolymer can be ascribed to the protons of the HFMA and MOTAC segments. For instance, the signals due to terminal methyl group protons are seen at approximately 0.75–1.3 ppm (g) and the signal of methylene protons (–OCH$_2$–CF$_2$–) at 4.39 ppm (h) is due to the influence of ester group and difluoromethylene (–CF$_2$–). The signal of the characteristic proton of –N(CH$_3$)$_3$Cl for the MOTAC part is visible at 3.21 ppm (l). The peaks at 3.66 (b) and 3.3 ppm (a) are attributable to the methylene protons and terminal methoxy protons of PEG. No signals from the protons associated with double bond of unreacted monomer can be detected from this 1H NMR spectrum. The HFMA and MOTAC contents in the graft copolymers are calculated by the (–OCH$_2$–CF$_2$–) protons ($\delta = 4.39$ ppm) of HFMA, (–N(CH$_3$)$_3$Cl) protons ($\delta = 3.21$ ppm) of MOTAC and (CH$_3$O–) proton ($\delta = 3.38$ ppm) of the SPEG macromonomer. Table 1 summarizes the HFMA and MOTAC contents in each graft copolymer. Here, the abbreviation scheme PEG–F$_x$M$_z$ is used, where X represents the HFMA wt% in the graft copolymer and Z represents the MOTAC wt% in the graft copolymer. Hence, for example, PEG–F60M4.5 is a graft copolymer with 60 wt% of HFMA and 4.5 wt% of MOTAC in the backbones.

To better characterize the structure of the graft copolymer, 19F NMR is used to determine the fluorocarbon moiety in the
copolymer. The 19F NMR spectrum of the graft copolymer depicted in Fig. 3 confirms the presence of three different kinds of fluorine resonances originating from the HFMA side chains. The singlet at -75.2 ppm is assigned to the end $-CF_3$ group and that at -212.9 ppm to the $-CHF_2$ group. Because of the influence of the $-OCH_2-$ group, the peak of $-OCH_2-CF_2-$ splits into two peaks at -114.3 ppm and -119.6 ppm. The 1H NMR and 19F NMR results confirm that the graft copolymers have been successfully prepared.

The molecular weight and molecular weight distribution of the SPEG macromonomer and P(HFMA-St-MOTAC)-g-PEG graft copolymers are determined by GPC. Chromatograms recorded from the initial SPEG macromonomer and graft copolymers are shown in Fig. 4. These chromatograms indicate a unimodal molecular weight distribution in both cases and an increase in the molecular weight as result of graft copolymerization. The molecular weight of the SPEG macromonomer determined by GPC (5340 g/mol) is found to be quite close to that predicted theoretically (5116 g/mol). The molecular weight and distribution of the SPEG macromonomer and graft copolymers measured by the GPC instrument are displayed in Tables 1 and 2. The results of GPC indicate that the reaction of the monomers occurs subsequently producing the high molecular weight graft copolymers.

3.2. Micellization behavior of P(HFMA-St-MOTAC)-g-PEG graft copolymer

The critical micelle concentration (CMC) is a measure describing the physical properties of the micelles. When the concentration is above the CMC, the amphiphilic copolymer can self-assemble into an ordered architecture to minimize the interfacial energy. Since the fluorescence spectra of the five samples are similar to each other, only the spectrum of PEG-F60M4.5 at a concentration range

![Fig. 3. 19F NMR spectrum of P(HFMA-St-MOTAC)-g-PEG graft copolymer.](image)

![Fig. 4. Typical GPC curves of (A) SPEG, $M_n = 5340$ g/mol and (B) PEG-F60M4.5 (Table 1, Sample 4), $M_n = 1.02 \times 10^5$ g/mol.](image)

![Fig. 5. Fluorescence spectra of PEG-F60M4.5 at different concentrations (The concentrations from bottom to top are $8 \times 10^{-4}, 2 \times 10^{-3}, 4 \times 10^{-3}, 8 \times 10^{-3}, 1 \times 10^{-3}, 1.3 \times 10^{-2}, 1.5 \times 10^{-2}, 1.8 \times 10^{-2}, 2 \times 10^{-2}, 2.4 \times 10^{-2}, 2.8 \times 10^{-2}$ g/L) (A) and plots of intensity vs. lgC of PEG-F60M4.5 (B). All the measurements are carried out at 25°C.](image)
from 8×10^{-4} to 2.8×10^{-2} g/L is shown in Fig. 5(A). It can be seen that the emission intensity increases with increasing polymer concentrations. Specifically, at low concentrations, there are small changes in the emission intensity. With increasing concentrations, marked changes in the intensity are observed suggesting a transfer of Nile Red probe to a more hydrophobic microenvironment and indicating formation of micelles. As shown in Fig. 5(B), plots of emission intensity vs. log C of PEG-F60M4.5 are flat at low concentrations and sigmoidal in the crossover region. The CMC is taken as the intersection of the tangent to the curve at the inflexion with the horizontal tangent through the points at the low polymer concentration. The critical micelle concentrations of the five samples are listed in Table 1. As reported in the literature, the CMC is influenced by many variables, such as the PEG content, temperature, molecular weight, and polydispersity index. The results here indicate that the CMC decreases with increasing HFMA contents in the graft copolymers (PEG-F48M2.1, PEG-F61M2.1, PEG-F67M2.2 in Table 1). This may be due to the unique properties of fluoropolymers such as low surface energy, reduced coefficient of friction, oleo- and hydrophobicity. Therefore, the content of HFMA may become the main factor affecting the CMC value. The experimental results are in good agreement with those previously reported [27].

3.4. Fluorescence spectroscopy

The fluorescence spectra of different types of PEG-FxMz in the absence and presence of DNA are shown in Fig. 7 (all the PEG-FxMz concentrations are kept at 0.12 g/L and above CMC). It can be seen from Fig. 7(A) that the pure PEG-FxMz emits three weak peaks at 340, 367, and 470 nm. The fluorescence emission peak at 340 nm is the strongest (from 27.5 to 30.5 for different PEG-FxMz solutions). Upon the addition of DNA, the fluorescence intensity of the PEG-FxMz increases as shown by Fig. 7(B), especially the peak at 340 nm (from 35 to 56.5 for different PEG-FxMz/DNA complexes solutions). When the concentration is above CMC, the PEG-FxMz copolymer can self-assemble into an ordered micelle. This implies that this copolymer micelle can interact with DNA and be protected by DNA efficiently. The interaction between DNA and PEG-FxMz creates

![Figure 6](image6.png) **Fig. 6.** Cell viability of CHO cells treated with graded doses of micelles for 24 h. Data were the average of at least three independent experiments. Error bars indicate ±SD.

![Figure 7](image7.png) **Fig. 7.** Fluorescence spectra of (A) PEG-FxMz and (B) PEG-FxMz/DNA complexes (DNA concentration was kept at 90 mg/L, all the PEG-FxMz concentration is kept at 0.12 g/L and volume ratio of PEG-FxMz/DNA is 6:1).
chain entanglement causing changes in the microenvironment around PEG-F₄M₂. The hydrophobic environment inside the DNA helix reduces the accessibility of solvent water molecules to the PEG-F₄M₂ micelle and the PEG-F₄M₂ mobility is restricted at the binding site, there is decrease in the vibration modes of relaxation followed by increasing fluorescent intensity.

The PEG-F₄M₂ can bind the double stranded DNA by different interactions on the basis of their structure. In the PEG-F₄M₂ aqueous system, there are electrostatic interactions, hydrophobic interactions, and H-bonding, which will influence PEG-F₄M₂ binding to the double stranded DNA. According to Fig. 7(B), when the content of MOTAC in the same and the hydrophobic characteristic contents of HFMA in PEG-F₄M₂ is increased, the fluorescence intensity increases slightly compared to pure PEG-F₄M₂ (PEG-F₄M₂/DNA, PEG-F₆M₁/DNA and PEG-F₆M₂/DNA in Fig. 7(B)). In addition, when the content of HFMA in the PEG-F₄M₂ does not change, increasing the MOTAC contents in the PEG-F₄M₂ leads to marked changes in the intensity as shown by the emission spectra compared to pure PEG-F₄M₂ (PEG-F₆M₁/DNA, PEG-F₆M₂/DNA and PEG-F₆M₃/DNA in Fig. 7(B)). Therefore, the electrostatic interaction [41] between positively charged MOTAC and negatively charged phosphate backbone at the periphery of the double helix DNA are the main factor for PEG-F₄M₂ binding to the double stranded DNA. The hydrophobic interaction due to the hydrophobic characteristic of the fluorinated segments is another factor that PEG-F₄M₂ can bind to the DNA. In addition, as the DNA double helix possesses many hydrophobic binding sites, it is likely that the fluorinated groups of PEG-F₄M₂ forms hydrogen bonds with the DNA consequently increasing the fluorescent intensity. Hence, H-bonding is another reason for the PEG-F₄M₂ binding to the DNA and electrostatic interaction, hydrophobic interaction, and hydrogen bonding exist in this system.

3.5. Viscosity studies

To further explore the interaction characteristics between PEG-F₄M₂ and DNA, the relative specific viscosity of DNA is examined by varying the concentrations of the added PEG-F₄M₂. Measuring the viscosity of DNA is a classical technique used to analyze the DNA-binding mode in solutions [42]. Hydrodynamic measurements such as viscosity, sedimentation, rotational diffusion, and so on sensitive to molecular lengths provide strong evidence of the DNA-binding modes, especially in the absence of crystallographic structural data [43]. A classical intercalation model demands that the DNA helix lengthens as base-pairs are separated to accommodate the binding molecule, leading to the increase of DNA viscosity. In contrast, a partial, non-classical intercalation of molecule can bend or kink the DNA helix and reduce its effective length and in turn its viscosity [44,45]. When electrostatic binding, groove binding or other outside binding occurs, the viscosity of DNA does not change basically [43,46].

The effects of PEG-F₄M₂ on the viscosity of DNA are shown in Fig. 8. As previously discussed, PEG-F₆M₆.5 and PEG-F₆M₄.5 can bind to DNA primarily by the electrostatic mode and it exerts essentially no effect on the DNA viscosity. With increasing amounts of PEG-F₄M₂, PEG-F₆M₁/DNA or PEG-F₆M₂/DNA, the relative viscosity of DNA increases steadily. The extent of increase in viscosity (Δη), which may depend on the DNA-binding mode and affinity, follows the order of Δη(PEG-F₆M₂/DNA) > Δη(PEG-F₆M₁/DNA) > Δη(PEG-F₄M₂/DNA). The experimental results suggest that these three graft copolymers can bind DNA via the classical intercalation mode. Owing to the more hydrophobic characteristic of the fluorinated segments, PEG-F₆M₂ can intercalate into the DNA base-pairs more deeply and thus show stronger DNA-binding affinity than PEG-F₆M₁/DNA and PEG-F₄M₂/DNA.

3.6. Gel electrophoresis of the DNA/copolymer mixture

One prerequisite to polymeric gene carrier is DNA condensation. The condensed form of the copolymer/DNA complexes can protect the plasmid DNA from cell barriers during gene delivery. As shown in Fig. 9, the ability of PEG-F₄M₂ to condense DNA is evaluated using a DNA retardation assay by agarose gel electrophoresis with different types of PEG-F₄M₂/DNA (Fig. 9(A), weight ratios of PEG-F₄M₂/DNA is 1:5) and PEG-F₆M₄.5/DNA (Fig. 9(B), weight ratios of PEG-F₆M₄.5/DNA ranging from 0 to 1:6:1). According to Fig. 4(A)
one can see that migration of the plasmid DNA slows when PEG-FxMz is added. However, the PEG-FxMz comprising different MOTAC or HFMA contents shows a different DNA-binding capacity. At a polymer/DNA weight ratio of 1.5, PEG-F60M4.5 and PEG-F61M6.5 can completely retard DNA migration showing a higher DNA-binding capacity than PEG-F67M2.2, PEG-F61M2.1, and PEG-F48M2.1. The results suggest that a high charge density or HFMA content in PEG-FxMz may benefit DNA-binding. As shown in Fig. 9(B), an increase in the PEG-F60M4.5 amount causes a gradual disappearance of the DNA and complete retardation of DNA is achieved at a PEG-F60M4.5/DNA weight ratio of 1:2. These results demonstrate that the copolymers may be used to bind DNA as an efficient gene vector.

3.7. UV-visible spectrophotometry

In addition to gel retardation assay, the DNA-binding ability of the graft copolymers is evaluated by UV-visible spectrophotometry. The PEG-FxMz/DNA complexes are centrifuged and the supernatant is measured at 260 nm which is the absorption peak of DNA. The results are shown in Table 3. Compared to the H2O/DNA column, after adding PEG-FxMz, the absorbance of the supernatant is significantly reduced. It shows that most of the DNA adsorbs to the PEG-FxMz micelles, and these PEG-FxMz/DNA aggregates are precipitated at the bottom of the complex solutions. It also can be seen from Table 3 that in the SPEG-F60D4.5/DNA and SPEG-F61D6.5/DNA system, the decline in the absorbance value is more than the other three, indicating that SPEG-F60D4.5 and SPEG-F61D6.5 micelles can more easily adsorb DNA compared to the other three. This result is consistent with the gel retardation assay, indicating that high charge density or HFMA contents in PEG-FxMz micelles may benefit DNA-binding. It also shows that the PEG-FxMz micelles which adsorb DNA can be used as an efficient gene vector.

3.8. Characterization of PEG-FxMz/DNA particles

The amphiphilic nature of the PEG-FxMz copolymers provides an opportunity to form micelles in water. Scheme 2 illustrates the assumed structure of the PEG-FxMz copolymer micelles. The micelle has a core–shell structure. The nonionic water-soluble PEG chains serve as a biocompatible outer hydrophilic shell stabilizing the micelles and MOTAC constitutes the positively charged crown. Because of the hydrophobic characteristic of the fluorinated segments, during the self-assembly process, they have a high tendency to bury themselves in the interior of the micelles formed as a hydrophobic core. These tri-layered cationic fluorne-containing amphiphilic graft copolymer micelles are capable for efficient DNA delivery (Scheme 2).

All methods reported for amphiphilic copolymers micelles preparation are in general also valid for self-assembled vesicular structures of amphiphilic polymers. The preparation methods can be divided into two groups: solvent free techniques and techniques with the aid of organic solvents. In the first group, the amphiphilic copolymer is in contact with the aqueous medium in its dry state and is subsequently hydrated to yield micelles. This approach offers the advantage that no organic solvent is present in the system and is mandatory in certain applications. In the second group, the amphiphilic copolymer is first dissolved in an appropriate organic solvent and then mixed with water. The organic phase is subsequently excluded utilizing an appropriate technique. Since it is not possible to completely remove all the solvent, the solvent residues may interfere with many applications and may lead to decrease micelles stability and promote aggregation. In this work, we choose the first method to prepare graft copolymers micelles by dissolving the pure copolymers in distilled water with the graft copolymer solutions having concentrations above CMC.

To be non-viral gene vectors, the micelles should have a good dispersive stability in an aqueous media and not aggregate during storage and transfer process [47]. The dispersive stability of the micelles is analyzed by monitoring the change in turbidity of

| Table 3 DNA-binding ability of graft copolymer measure by UV–vis spectrophotometry. |
|---------------------------------|--------|--------|--------|--------|--------|
| Volume ratio of PEG-FxMz (H2O):DNA* |
0.1	0.2	0.4	0.7	1	
H2O/DNA	0.096	0.085	0.072	0.064	0.061
SPEG-F61D2.1/DNA	/	0.043	0.032	0.022	0.023
SPEG-F61D2.1/DNA	/	0.032	0.031	0.029	0.028
SPEG-F67D2.2/DNA	0.035	0.031	0.029	/	/
SPEG-F60D4.5/DNA	0.031	0.028	0.027	0.021	0.019
SPEG-F61D6.5/DNA	0.033	0.027	0.025	0.014	/

* calf-thymus DNA concentration was kept at 90 mg/L, all the PEG-FxMz concentration was kept at 0.12 g/L and above CMC.

"% absorption peaks of DNA at 260 nm measure by UV–vis spectrophotometer.

![Scheme 2. Schematic drawing of self-assembled of the PEG-FxMz micelle and loading of DNA.](image-url)
various PEG-F_XM_Z copolymer micelle solutions (all the PEG-F_XM_Z concentrations are kept at 0.12 g/L and above CMC) as shown in Fig. 10. Owing to the hydrophobic characteristic of the fluorinated segments, they have a high tendency to bury themselves in the interior of the micelles formed as a hydrophobic core. The hydrophobic HFMA core compresses the complexes into smaller and more compact particles, which are very useful for particle stabilization, and the outer hydrophilic PEG chains shell also can stabilize the micelles. As shown in Fig. 10, these cationic fluorine-containing micelles prepared with PEG-F48M2.1, PEG-F61M2.1, PEG-F60M4.5 and PEG-F61M6.5 exhibit no significant change in turbidity even after 15 days of incubation at 37 °C. The hydrodynamic diameter of those micelles also does not change significantly after 15 days (data not shown), indicating excellent dispersive stability. The micelles prepared with PEG-F67M2.2 exhibit a gradual decrease in turbidity 10 days later. On the one hand, the more hydrophobic the segment of HFMA, the higher the hydrophobic force and the copolymer is more prone to secondary or higher level of aggregation. On the other hand, on account of the decrease in the PEG chains, its role in stabilizing the micelles is weakened, resulting in the formation of large micelles during incubation at 37 °C. Hence, the dispersive stability of PEG-F67M2.2 micelles is not good as that of other samples.

Fig. 11. TEM morphology of PEG-F60M4.5 micelles in aqueous solution (A); pure DNA in aqueous solution (B); PEG-F60M4.5/DNA (volume ratio of PEG-F60M4.5/DNA was 5:1) complexes particles (C), and PEG-F60M4.5/DNA (volume ratio of PEG-F60M4.5/DNA was 1:1) complexes particles (D) (DNA concentration was kept at 90 mg/L, PEG-F60M4.5 concentration was kept at 0.12 g/L).

Fig. 12. Hydrodynamic diameters and distribution of pure PEG-F60M4.5 micelles (A); PEG-F60M4.5/DNA (volume ratio of PEG-F60M4.5/DNA is 5:1) complexes particles (B), and PEG-F60M4.5/DNA (volume ratio of PEG-F60M4.5/DNA is 1:1) complexes particles (C). (DNA concentration is kept at 90 mg/L and PEG-F60M4.5 concentration is kept at 0.12 g/L).
slightly (from 50 nm to 95 nm) with increasing fluorine contents in the copolymers. This may be due to more fluorine segments and larger hydrophobic force and the copolymer is more prone to secondary or higher level of aggregation and eventually larger particle size.

Fig. 11(B) displays the TEM images of pure calf-thymus DNA with a concentration of 90 mg/mL in the aqueous solution. Pure calf-thymus DNA in the aqueous solution cannot form micelles and do not show clearly in the TEM micrographs. After DNA is added to the PEG-F60M4.5 copolymer solution (volume ratio of PEG-F60M4.5:DNA was 5:1), Fig. 11(C) shows that the morphology, size, and size distribution of the PEG-F60M4.5 micelles change significantly. In comparison with Fig. 11(A), all of the micelles are not scattered. Many micelles (10–20) get together and form large aggregates. In these aggregates, the small micelles are still visible and around those aggregates, there are black adsorbed materials which are DNA by comparing Fig. 11(A) and (B). As previously discussed, because of the formation of the micelle surface with a positive charge and the hydrophobic characteristics of fluorinated segments gathered in the interior of the micelles, they adsorb negatively charge DNA via electrostatic interactions and hydrophobic interactions. However, due to the low DNA concentration, DNA cannot have good coverage on all the surface of the micelles. When water evaporates, the concentration in the solution increases. This leads to an increase in the number density of the micelles and a corresponding decrease in the distance. The DNA adsorbed on the surface of the micelles will increase the absorption capacity to those nearby micelles and then the micelles coalesce together to form large aggregates. The diameter and size distribution of PEG-F60M4.5/DNA (volume ratio is 5:1) complexes particle in the aqueous medium estimated by PCS are shown in Fig. 12(B). PCS measurements demonstrate that the particle size of the PEG-F60M4.5/DNA (volume ratio is 5:1) complexes is much larger than that of pure PEG-F60M4.5 copolymer micelles resulting in large polydispersity.

The morphologies of PEG-F60M4.5/DNA complexes particle when the volume ratio of PEG-F60M4.5:DNA is 1:1 are shown in Fig. 11(D). Comparing Fig. 11(A) and (C), the adsorption phenomenon between PEG-FxMz micelles and DNA is more evident. The majority of the particles are spherical and there is no evidence of the micellar structure such as that shown in Fig. 11(A) and (B). On account of aggregation of the particles which adsorb DNA, some large aggregates (80–100 nm) can be observed in Fig. 11(D). A number of small particles (40–60 nm) can also be observed from Fig. 11(D) and these small particles are formed by a single micelle (Fig. 11(A)) adsorbing the DNA. PCS measurements show typically double peaks (Fig. 12(C)) and have a large polydispersity which is consistent with the TEM results. The large peak shows aggregation of the particles adsorbing DNA.

Further research is carried out to investigate the influence of the HFMA and MOTAC content on the adsorption phenomenon between PEG-FxMz and DNA (volume ratio of PEG-FxMz:DNA is 1:1, DNA concentration is kept at 90 mg/L, and PEG-FxMz concentration is kept at 0.12 g/L). It is found that when the content of MOTAC in the same, with increasing contents of HFMA in PEG-FxMz (PEG-F48M2.1, PEG-F61M2.1 and PEG-F67M2.2), the hydrodynamic diameters of the PEG-FxMz/DNA particles in the aqueous medium estimated by PCS increase slightly (90–150 nm). The morphology of these aggregates does not change significantly (images not shown), except that the PEG-F48M2.1/DNA complex is more uniform than the other two and large aggregates are rare. In addition, when the content of HFMA in PEG-FxMz does not change and the MOTAC contents in PEG-FxMz (PEG-F61M2.1, PEG-F60M4.5 and PEG-F61M6.5) are increased, the diameters of PEG-FxMz/DNA particles in the aqueous medium increase obviously (87–220 nm). The PEG-F61M6.5/DNA aggregates have three peaks ranging from 70 nm to 220 nm. In particular, the TEM photos (image not shown) of the PEG-F61M6.5/DNA complex reveal more and large aggregates, but individual dispersed particles are rare. According to the different TEM and PCS results, it is clear that the electrostatic interactions between positively charged MOTAC and negatively charged DNA are the main factor for the PEG-FxMz micelles adsorbing the calf-thymus DNA resulting in larger particle sizes. The hydrophobic interaction due to the hydrophobic characteristic of the fluorinated segments is another factor for PEG-FxMz micelles adsorbing the calf-thymus DNA. This is also consistent with the fluorescence results.

The surface charge of the vector/gene complexes is very important for gene transfection. Positively charged particles can electrostatically adsorb on the negatively charged cell membrane, and clathrin-dependent endocytosis is responsible for the cellular uptake of the particles [48]. Due to the electrostatic interaction nature between the PEG-F60M4.5 and DNA, both their ratio and environmental conditions should influence the surface charge density of the resultant particles. Therefore, their zeta potentials are measured. As shown in Table 4, the zeta potential of the PEG-F60M4.5/DNA complex increases from −6.99 mV to 11.89 mV with increasing volume ratio. The increase of zeta potential in PEG-F60M4.5/DNA can be understood as the result of the PEG-F60M4.5 micelles adsorbing the DNA.

The stability of the PEG-FxMz/DNA particles is examined by incubating the particles at 37 °C and then measuring the change in the hydrodynamic diameter and zeta potentials of these particles. The particles hydrodynamic diameter and zeta potentials do not change significantly for ~48 h (data not shown) suggesting that the PEG-FxMz/DNA particles have good colloidal stability. The TEM, PCS, and zeta potential results confirm that DNA can readily adsorb onto the PEG-FxMz micelles, and these PEG-FxMz/DNA complex particles have good colloidal stability, suggesting that PEG-FxMz is an excellent matrix for non-viral gene vectors.

4. Conclusion

We have synthesized a series of cationic fluorine-containing amphiphilic graft copolymers [HFMA-St-MOTAC]-g-PEG comprising poly(hexafluorobutyl methacrylate) (PHFMA), poly(methacryl oxyethyl trimethylammonium chloride) (PMTAC), and polystyrene (PS) backbones, as well as poly(ethylene glycol) (PEG) side chains and evaluated the self-assembly micelle potential from the perspective of a new non-viral gene carrier. The results show that the PEG-FxMz mainly forms spherical micelles in aqueous media (size of 50–95 nm) and stabilization of the hydrophobic HFMA core combined with the PEG antifouling ability can further improve the micelles stability. The critical micelle concentrations of the copolymers measured by fluorescence show that they decrease with increasing HFMA contents in the copolymers. The cytotoxicity

<table>
<thead>
<tr>
<th>Volume ratio (PEG-F60M4.5:DNA)</th>
<th>1:1</th>
<th>2:1</th>
<th>5:1</th>
<th>8:1</th>
<th>10:1</th>
<th>Pure PEG-F60M4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeta Potential (mV)</td>
<td>−6.99 ± 0.24</td>
<td>3.56 ± 0.17</td>
<td>5.56 ± 0.37</td>
<td>8.56 ± 0.27</td>
<td>11.89 ± 0.5</td>
<td>12.76 ± 0.12</td>
</tr>
</tbody>
</table>

* DNA concentration was kept at 90 mg/mL, and PEG-F60M4.5 concentration was kept at 0.12 g/L.
study indicates low cytotoxicity. Fluorescence spectroscopy reveals electrostatic interaction, hydrophobic interaction, and hydrogen bonding in the PEG-F₆M₂/DNA complexes. Viscosity studies show that the PEG-F₆M₆.5 and PEG-F₆M₆.4 can bind DNA primarily via the electrostatic mode whereas PEG-F₄M₆.1, PEG-F₆M₁.2 and PEG-F₆M₂.2 can bind DNA via the classical intercalation mode. The DNA-binding capacity measured by gel retardation assay and UV–vis spectrophotometry discloses that the copolymers have good binding capacity to DNA and suggests that a high charge density or HFMA contents in PEG-F₆M₂ may benefit DNA-binding. TEM, PCS, and zeta potential results show that adsorption occurs readily between PEG-F₆M₂ micelles and DNA and these PEG-F₆M₂/DNA complex particles have good colloidal stability. These results are important to the application of this non-viral vector in gene delivery system.

Acknowledgments

The work was jointly supported by the Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-year Plan Period (No. 2008BAC32B03) and Hong Kong Research Grants Council (RGC) General Research Funds (GRF) No. CityU 112306.

Appendix

Figures with essential colour discrimination. Figs. 6 and 7 and Scheme 2 in this article may be difficult to interpret in black and white. The full colour images can be found in the online version, at doi:10.1016/j.biomaterials.2009.12.014.

References

