

Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

This form is for the completion by the <u>Course Leader</u>. The information provided on this form is the official record of the course. It will be used for the City University's database, various City University publications (including websites) and documentation for students and others as required.

Please refer to the Explanatory Notes on the various items of information required.

Prepared / Last Updated by:

Name:	Dr. Jianbo Yue	Academic Unit:	Department of Biomedical Sciences
Phone/email:	3442 2812 / jianbyue@cityu.edu.hk	Date:	18 November 2019

City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

Part I Course Overview

Course Title:	Cell Biology
Course Code:	CHEM2066
Course Duration:	1 semester
Credit Units:	3 credits
Level:	B2
	Arts and Humanities
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	CHEM1200/BCH1200 Discovery in Biology (for normative 4-year students) or A Level Biology (for advance standing I students)
Equivalent Courses : <i>(Course Code and Title)</i>	BMS2201 Molecular Biology of the Cell BCH2066 Cell Biology
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

(A 150-word description about the course)

This course introduces the basic theme of life on earth: cells. Students will learn the interplay of morphology and functions in animal and plant cells in molecular terms. The main objective of this course is to let students appreciate the intimate relationship between "structure" and "function" in biology: how specialized cellular structures are evolved to accommodate and facilitate particular biochemical reactions and how the defects in cellular structures can lead to human diseases. This course, in company of other core courses in this programme such as Biochemistry, Genetics and Molecular Biology, will provide the basic conceptual framework in human biology, and prepare for more advanced courses such as Systems Biology, Cell Transport and Signalling, and Technology for Regenerative Medicine.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs [#]	Weighting*	Discove		
		(if	curricul	um rela	ated
		applicable)	learning	g outcor	mes
			(please	tick	where
			appropr	iate)	
			A1	A2	A3
1.	Define the structure and functions of major organelles and subcellular structures in typical prokaryotic and eukaryotic cells	10%	~	✓	v
2.	Relate structures of the plasma membrane of prokaryotic and eukaryotic cells to their functions in sensing and reacting to the environment	20%	~	✓	•
3.	Explore the fundamental mechanisms of cell cycle and signal transduction	20%	~	~	~
4.	Apply the principles of cytoskeleton on the mechanisms of intracellular transport and cell locomotion	20%	~	~	~
5.	Integrate cell biology concepts to the developmental and physiological conditions in different cell types of the human body	20%	~	✓	v
6	Apply knowledge of cell biology to critically read scientific literature	10%	~	✓	✓
* If 14	eighting is assigned to CILOs, they should add up to 100%	100%			

* If weighting is assigned to CILOs, they should add up to 100%. 100%

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.		Hours/week			
		1	2	3	4	5	(if applicable)
Lectures, group	Teaching and learning will be primarily	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
discussions and	based on lectures, group discussions and						
presentation	presentation.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CII	CILO No.				Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: 20%							
Quizzes	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	10%	
Essays and presentations	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	10%	
Examination: 80% (duration: 3 hours)							
* The weightings should add up to 100%.						100%	

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Quizzes	Basic knowledge and principle of cell, organelles, cell signalling, cell cycle, cytoskeleton, immune cells, nerve cells, cancer cells, and stem cells	Deep understanding the principle of cell, organelles, cell signalling, cell cycle, cytoskeleton, immune cells, nerve cells, cancer cells, and stem cells	Good understanding the principle of cell, organelles, the cell signalling, cell cycle, cytoskeleton, immune cells, nerve cells, cancer cells, and stem cells	Fair understanding the principle of cell, organelles, cell signalling, cell cycle, cytoskeleton, immune cells, nerve cells, cancer cells, and stem cells	Partial understanding the principle of cell, organelles, cell signalling, cell cycle, cytoskeleton, immune cells, nerve cells, cancer cells, and stem cells	Fail to understand the principle of cell, organelles, cell signalling, cell cycle, cytoskeleton, immune cells, nerve cells, cancer cells, and stem cells
2. Presentations	Understanding and analysis of the topics; knowledge depth, logic, and clarity of presentation; and collaboration among peers	Deep understanding and critical analysis of the topics; excellent knowledge depth, logic and clear oral presentation; and excellent collaboration among peers	Good understanding and critical analysis of the topics; good knowledge depth, logic and clear oral presentation; and good collaboration among peers	Fair understanding but lack of critical analysis of the topics; adequate knowledge depth, logic and clear oral presentation; and some collaboration among peers	Partial understanding and lack of critical analysis of the topics; marginal knowledge depth, and lacking logic and clear oral presentation; and some collaboration among peers	Fail to understand the topics; poor knowledge depth, and lacking logic and clear oral presentation; and poor collaboration among peers

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
3. Examination	Principle, processes,	Excellent	Good synthesis of	Fair synthesis of	Partial synthesis of	Poor synthesis of
	and characteristics of	synthesis of	principle,	principle,	principle, processes,	principle, processes,
	cell biology;	principle,	processes, and	processes, and	and characteristics of	and characteristics of
	understanding and	processes, and	characteristics of	characteristics of	cell biology; marginal	cell biology; poor
	analysis of functions	characteristics of	cell biology; good	cell biology;	understanding and	understanding and
	of major organelles,	cell biology; deep	understanding and	adequate	analysis of functions	analysis of functions
	the interplay between	understanding and	analysis of	understanding and	of major organelles,	of major organelles,
	structure and	analysis of	functions of major	analysis of	the interplay between	the interplay between
	function, cell	functions of major	organelles, the	functions of major	structure and	structure and
	signalling, cell cycle,	organelles, the	interplay between	organelles, the	function, cell	function, cell
	cytoskeleton,	interplay between	structure and	interplay between	signalling, cell cycle	signalling, cell cycle
	immune cells, nerve	structure and	function, cell	structure and		
	cells, cancer cells,	function, cell	signalling, cell	function, cell		
	and stem cells	signalling, cell	cycle	signalling, cell		
		cycle		cycle		

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

The basic concept of cells as the functional units of life.

Major organelles in plant and animal cells such as membrane, mitochondria, chloroplast, ER, Golgi body, and cell nucleus. The main focus will be on how the structure of each organelle is closely linked to its functions.

The differences and similarities between prokaryotes and eukaryotes.

The basic concept of the cell cycle and cell death. Major events of cell cycle stages, mitosis, meiosis and apoptosis will be examined.

The cytoskeleton systems of microtubule and actin-myosn. How intracellular transport and vesicular transport can be achieved with the microtubule cytoskeleton. How changes in the actin-myosin cytoskeleton can affect cellular structures and movements, which in turn lead to muscle contractions and behavioural responses to the environment.

Different cell types in a multicellular organism have very different sizes, shapes and functions. The genome contains the instructions for building cells, but how this information is accessed, read and interpreted depends on the cell type and its stage of development. Examples of different cell types, such as nerve cells, immune cells, cancer and stem cells will be examined in the contexts of how these cells are specialized for their functions.

The embryonic development of human beings from a fertilised egg to the formation of the nervous system will be used as an example to illustrate the integral processes of cell division, cell differentiation and morphogenesis.

The malformation or malfunctioning of different cellular structures can lead to human diseases. Students are encouraged to explore examples such as lysosomal diseases, neurodegenerative diseases and nuclear envelope diseases. In addition, the action of natural toxins, such as bacterial alpha-toxins and algal toxins, on the cellular structures will also be explored.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Molecular Biology of The Cell, Bruce Alberts, Alexander Johnson, Julian Lewis, Martin
	Raff, Keith Roberts, and Peter Walter.
	ISBN: 9780815344322
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Becker's World of the Cell. Jeff Hardin, Gregory Bertoni, Lewis Kleinsmith. International
	Edition, 8 th Edition (2011)
	ISBN13: 9780321709783
	ISBN10: 0321709780
2.	Molecular Cell Biology, Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty
	Krieger, Anthony Bretscher.
	ISBN:142923413X

Please specify the Gateway Education Programme Intended Learning Outcomes (PILOs) that the course is aligned to and relate them to the CILOs stated in Part II, Section 2 of this form:

GE PILO	Please indicate which CILO(s) is/are related to this PILO, if any (can be more than one CILOs in each PILO)
PILO 1: Demonstrate the capacity for self-directed learning	
PILO 2: Explain the basic methodologies and techniques of inquiry of the arts and humanities, social sciences, business, and science and technology	
PILO 3: Demonstrate critical thinking skills	
PILO 4: Interpret information and numerical data	
PILO 5: Produce structured, well-organised and fluent text	
PILO 6: Demonstrate effective oral communication skills	
PILO 7: Demonstrate an ability to work effectively in a team	
PILO 8: Recognise important characteristics of their own culture(s) and at least one other culture, and their impact on global issues	
PILO 9: Value ethical and socially responsible actions	
PILO 10: Demonstrate the attitude and/or ability to accomplish discovery and/or innovation	

GE course leaders should cover the mandatory PILOs for the GE area (Area 1: Arts and Humanities; Area 2: Study of Societies, Social and Business Organisations; Area 3: Science and Technology) for which they have classified their course; for quality assurance purposes, they are advised to carefully consider if it is beneficial to claim any coverage of additional PILOs. General advice would be to restrict PILOs to only the essential ones. (Please refer to the curricular mapping of GE programme: <u>http://www.cityu.edu.hk/edge/ge/faculty/curricular_mapping.htm</u>.)

A. Please select an assessment task for collecting evidence of student achievement for quality assurance purposes. Please retain at least one sample of student achievement across a period of three years.

Selected Assessment Task