

Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

This form is for the completion by the <u>Course Leader</u>. The information provided on this form is the official record of the course. It will be used for the City University's database, various City University publications (including websites) and documentation for students and others as required.

Please refer to the Explanatory Notes on the various items of information required.

Prepared / Last Updated by:

Name:	Dr. Doris Au	Academic Unit:	Department of Chemistry
Phone/email:	3442 9710 / bhdwtau@cityu.edu.hk	Date:	18 November 2019

1

City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

Part I Course Overview

Course Title:	Diversity of Life and Microbiology Laboratory
Course Code:	CHEM2070
Course Duration:	1 semester
Credit Units:	2 credits
Level:	B2
	Arts and Humanities
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : <i>(Course Code and Title)</i>	CHEM1200/BCH1200 Discovery in Biology (for normative 4-year students) or A Level Biology (for advance standing I students)
Precursors: (Course Code and Title)	CHEM2013/BCH2013 Microbiology, CHEM2067/BCH2067 Diversity of Life and Evolution
Equivalent Courses : (Course Code and Title)	BCH2070 Diversity of Life and Microbiology Laboratory
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

(A 150-word description about the course)

This course aims to provide students with competent skills to discover different life forms in the natural environment including microbes, and deal with these specimens, living and preserved, from collection to design of protocols for detailed examination. This will include basic study and hands-on practice of the following:

- a) principles of microscopy and the different microscopic techniques;
- b) discovery fieldtrip, collection and treatment of live and preserved specimens;
- c) documentation and presentation of observations.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting* (if	curricu	ery-enri lum rela	ated
		applicable)		g outco	
			(please		where
			approp	riate)	
			A1	A2	A3
1.	Use compound and stereomicroscopes with competence			\checkmark	
	and application of different light microscopy techniques				
	to examine biological specimens.				
2.	Master the technique of discovery of specific groups of			\checkmark	
	microbes (e.g. bacteria, fungi, single-cell algae and				
	protists), animals and plants and their collection from				
	the environment for the purpose of laboratory				
	investigation.				
3.	Perform laboratory procedures to prepare samples of			\checkmark	\checkmark
	living and preserved plant, animal and microbe (e.g.				
	bacteria, fungi, single-cell algae and protists) specimens				
	to study their morphology and relate these features to				
	their functions whenever applicable.				
4.	Make relevant and clear records of laboratory activities		\checkmark	\checkmark	\checkmark
	to document procedures and observations to reflect				
	thorough understanding of the topic under investigation.				
* If w	eighting is assigned to CILOs, they should add up to 100%.	100%			

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.			Hours/week (if applicable)	
		1	2	3	4	
Video	Video presentation and hands-on	\checkmark				
presentation and	laboratory class on the use of compound					
hands-on	and stereo microscopes using different					
laboratory class	light microscopy techniques to examine					
	live and preserved specimens. Students					
	will be working individually.					
Field trips	Field trips to an appropriate ecological		\checkmark			
	sites will be organised for students to					
	discover how the different life forms					
	exist in the natural environment and					
	collect life specimens in groups for					
	laboratory investigation whenever					
	necessary or possible. Relevant					
	government regulations in relation to					
	collection of specimens in the wild will					
	be explained.					
Laboratory	Laboratory exercises involving the			\checkmark		
exercises	examination of representative plant and					
	animal kingdoms and the microbes using					
	different microscope techniques.					
	Students will be working in groups.					
Report writing	Video presentations and readings will be				\checkmark	
	assigned to help students to learn and					
	develop the skills necessary to write a					
	fieldtrip and /or a laboratory report					
	including laboratory log book entries and					
	biological drawings.					

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities		CILO No.			Weighting*	Remarks
	1	2	3	4		
Continuous Assessment: <u>100</u> %						
Laboratory Class Performance	\checkmark				40%	
(logbooks, skills demonstration,						
participation in class activities,						
attendance)						
Fieldwork / Group Presentation /		\checkmark	\checkmark	\checkmark	50%	
Laboratory Reports						
Quizzes	\checkmark		\checkmark	\checkmark	10%	
Examination: <u>0</u> % (duration:)						
* The weightings should add up to 100%.					100%	

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Laboratory Class	Capacity for	High	Significant	Moderate	Basic	Not even reaching
Performance	self-directed learning					marginal levels
(logbooks, skills	to comprehend and					
demonstration,	explain in detail with					
participation in	accuracy the					
class activities,	knowledge of					
attendance)	biodiversity and					
	microbiology					
2. Fieldwork / Group	Ability to apply the	High	Significant	Moderate	Basic	Not even reaching
Presentation /	knowledge of and		-			marginal levels
Laboratory	techniques for					_
Reports	biodiversity and					
-	microbiology in field					
	study					
3. Quizzes	Ability to explain	High	Significant	Moderate	Basic	Not even reaching
	skill and microscopy		-			marginal levels
	techniques for					-
	microbiology and					
	diversity					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Principles of microscopy and their applications. Laboratory safety. Aseptic techniques. Differentiation of different bacterial groups – staining and biochemical methods.

Morphological and functional characteristics of

- Single-cell algae (diatoms, dinoflagellates, green algae), protists (protozoa, macro-algae)
- Major fungal groups (chytrids, zygomycetes, ascomycetes and basidiomycetes) and chromists
- Non-vascular plants (bryophytes, mosses)
- Vascular non-seed plants (whisk ferns, club mosses, horsetails, ferns)
- Vascular plants (conifers, flowering plants)
- Invertebrate animals (selected key phyla)
- Vertebrate animals (from fish to mammals)

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Practical Skills in Biology. Allan Jones, Rob Reed and Jonathan Weyers. 4th ed. 2007. Pearson /
	Benjamin Cummings.

Please specify the Gateway Education Programme Intended Learning Outcomes (PILOs) that the course is aligned to and relate them to the CILOs stated in Part II, Section 2 of this form:

GE PILO	Please indicate which CILO(s) is/are related to this PILO, if any (can be more than one CILOs in each PILO)
PILO 1: Demonstrate the capacity for self-directed learning	
PILO 2: Explain the basic methodologies and techniques of inquiry of the arts and humanities, social sciences, business, and science and technology	
PILO 3: Demonstrate critical thinking skills	
PILO 4: Interpret information and numerical data	
PILO 5: Produce structured, well-organised and fluent text	
PILO 6: Demonstrate effective oral communication skills	
PILO 7: Demonstrate an ability to work effectively in a team	
PILO 8: Recognise important characteristics of their own culture(s) and at least one other culture, and their impact on global issues	
PILO 9: Value ethical and socially responsible actions	
PILO 10: Demonstrate the attitude and/or ability to accomplish discovery and/or innovation	

GE course leaders should cover the mandatory PILOs for the GE area (Area 1: Arts and Humanities; Area 2: Study of Societies, Social and Business Organisations; Area 3: Science and Technology) for which they have classified their course; for quality assurance purposes, they are advised to carefully consider if it is beneficial to claim any coverage of additional PILOs. General advice would be to restrict PILOs to only the essential ones. (Please refer to the curricular mapping of GE programme: <u>http://www.cityu.edu.hk/edge/ge/faculty/curricular mapping.htm</u>.)

A. Please select an assessment task for collecting evidence of student achievement for quality assurance purposes. Please retain at least one sample of student achievement across a period of three years.

Selected Assessment Task