

Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

This form is for the completion by the <u>Course Leader</u>. The information provided on this form is the official record of the course. It will be used for the City University's database, various City University publications (including websites) and documentation for students and others as required.

Please refer to the Explanatory Notes on the various items of information required.

Prepared / Last Updated by:

Name:	Dr. Yun Wah Lam	Academic Unit:	Department of Chemistry
Phone/email:	3442 6347 / yunwlam@cityu.edu.hk	Date:	18 November 2019

City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

Part I Course Overview

Course Title:	Biological Techniques and Instrumentation
Course Code:	CHEM4064
Course Duration:	1 semester
Credit Units:	4 credits
Level:	B4
Proposed Area: (for GE courses only)	Arts and Humanities Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : <i>(Course Code and Title)</i>	Nil
Precursors: (Course Code and Title)	CHEM2003/BCH2003 Biochemistry
Equivalent Courses : (Course Code and Title)	BCH4064 Biological Techniques and Instrumentation
Exclusive Courses : (Course Code and Title)	BMS4101 Analytical Biochemistry

Part II Course Details

1. Abstract

(A 150-word description about the course)

The purpose of this course is to explain to the students the following sentence:

"Progress in science depends on new techniques, new discoveries, and new ideas, probably in that order."

Sydney Brenner, 2002 Nobel Prize Winner in Physiology/Medicine

This course is about the interplay between techniques, discoveries and ideas in the progress of science. Through taking part in this course, the students will:

- Acquire knowledge on the history of development and the working principles of a selection of modern biological techniques.
- Examine how advances in biological sciences have ALWAYS been made possible by technical breakthroughs.
- Critically evaluate the roles of creativity and innovation in the invention of biological techniques.
- Develop the abilities to critically evaluate newly invented biological techniques they encounter in the literature and to apply these new techniques in realistic research situations.
- Develop the skills in original thinking, teamwork and presentation.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs [#]	Weighting*	Discov	•	
		(if	curricu	lum rel	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp		
			Al	A2	A3
1.	Describe the working principles and history of			\checkmark	
	development of three groups of modern biological				
	techniques (see below) introduced throughout the course.				
2.	Identify the applications and limitations of each of the			\checkmark	
	taught biological technique.				
3.	Analysing the key elements contributing to the invention of		\checkmark		\checkmark
	new biological techniques.				
4.	Critically evaluate the "Methods and Materials" section of		\checkmark	\checkmark	
	the original papers published in broad-audience,				
	high-impact cell biology journals such as Nature Cell				
	Biology and Journal of Cell Biology.				
5.	<u>Create</u> original research proposals, using combinations of				\checkmark
	biological techniques taught during the course, when given				
	a realistic biological project.				
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (*TLAs designed to facilitate students' achievement of the CILOs.*)

TLA	Brief Description	CII	LO N	0.			Hours/week (if applicable)
		1	2	3	4	5	
Lectures and	Students will learn in lectures and	\checkmark	\checkmark				
in-class	in-class discussions by examining three						
discussions	large groups of biological techniques.						
	For each group of techniques, students						
	will be introduced the biological						
	problems involved, how scientists						
	developed new techniques to tackle the						
	problems, and how these new						
	techniques led to new discoveries in						
	biology (which invaluably led to new						
	problems that required new techniques).						
In-class debate	Students will be asked to focus on one			\checkmark			
	technique and, through in-class debate,						
	examine the key factors that contribute						
	to its development.						
Oral	Students will be asked to examine				\checkmark		
presentations	papers chosen (by course leader) from						
	the current issues of Nature Cell						
	Biology, Journal of Cell Biology, or						
	other journals of similar calibre. They						
	will be asked to illustrate, in oral						
	presentations, how different techniques						
	taught in the course are used in						
	combination to address specific						
	biological questions.						
Group activities	Students will be asked to divide in					\checkmark	
	groups and each group given (by course						
	leader) a biological question. They will						
	develop original research proposals,						
	based on biological techniques learned						
	in CILO1, to tackle the scientific						
	questions.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities		CILO No.		Weighting*	Remarks		
	1	2	3	4	5		
Continuous Assessment: <u>45</u> %							
Tutorial Assignment	\checkmark	\checkmark			\checkmark	35%	
Web-based Discussion / Oral Presentation /			\checkmark	\checkmark		10%	
Debate							
Examination: 55% (duration: 3 hours)	\checkmark	\checkmark	\checkmark	\checkmark		55%	
* The weightings should add up to 100%.						100%	

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
1. Tutorial Assignment	CAPACITY for PROBLEM-SOLVING by utilizing the concepts and techniques taught in lectures in real-life research questions	(A+, A, A-) High	(B+, B, B-) Significant	(C+, C, C-) Moderate	(D) Basic	(F) Not even reaching marginal levels
2. Web-based Discussion / Oral Presentation / Debate	ABILITY to IDENTIFY biological questions that CAN or CANNOT be solved by the biological techniques and instruments introduced in this course. ABILITY to EXPLAIN the methodology and procedure published in research papers in this field.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	ABILITY to APPLY the biological techniques and instruments introduced in this course to tackle real-life research problems and to ADAPT and COMBINE these techniques for original scientific questions	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

•

•

(An indication of the key topics of the course.)

This course will focus on three groups of biological techniques:

- Visualization of gene expression
- Microscopy
- Manipulation of gene expression
 - Introduction of foreign DNA into cells
 - o RNA interference
 - Detection of gene expression
 - Detection of protein expression
 - o Proteomics

This course will also include the following skills:

- Presentation skills
- Technology transfer
- Entrepreneurship in science
- Open source learning in science

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Next generation sequencing technologies and challenges in sequence assembly
	El-Metwally, Sara author. Ouda, Osama M. author.; Helmy, Mohamed author.
	New York, New York : Springer, 2014
	Available online at Run Run Shaw Library
2.	Kwok, C. K., Tang, Y., Assmann, S. M. & Bevilacqua, P. C. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci. 40, 221-232 (2015).
3.	Kwok, C. K. Dawn of the in vivo RNA structurome and interactome. Biochem. Soc. Trans.
	44, 1395-1410 (2016).
4.	Targeted genome editing using site-specific nucleases : ZFNs, TALENs, and the
	CRISPR/Cas9 system
	Yamamoto, Takashi. Yamamoto, Takashi Editor
	Tokyo, Japan : Springer, 2015
	Available online at Run Run Shaw Library

5.	Introduction to fluorescence
	Jameson, David M. author.
	Boca Raton : CRC Press, Taylor & Francis Group, 2014
	Available at Run Run Shaw Library Circulation Collection (QP519.9.F56 J36 2014)
6.	Essentials of single-cell analysis : concepts, applications and future prospects
	Tseng, Fan-Gang. Tseng, Fan-Gang editor.; Santra, Tuhin Subhra editor.
	1st ed. 2016. Berlin, Germany ; Heidelberg, Germany : Springer, 2016
	Available online at Run Run Shaw Library
7.	Modern proteomics sample preparation, analysis and practical applications
	Carrasco Marqués, Martín editor.; Mirzaei, Hamid editor.
	Cham, Switzerland : Springer, 2016
	Available online at Run Run Shaw Library

A. Please specify the Gateway Education Programme Intended Learning Outcomes (PILOs) that the course is aligned to and relate them to the CILOs stated in Part II, Section 2 of this form:

GE PILO	Please indicate which CILO(s) is/are related to this PILO, if any (can be more than one CILOs in each PILO)
PILO 1: Demonstrate the capacity for self-directed learning	
PILO 2: Explain the basic methodologies and techniques of inquiry of the arts and humanities, social sciences, business, and science and technology	
PILO 3: Demonstrate critical thinking skills	
PILO 4: Interpret information and numerical data	
PILO 5: Produce structured, well-organised and fluent text	
PILO 6: Demonstrate effective oral communication skills	
PILO 7: Demonstrate an ability to work effectively in a team	
PILO 8: Recognise important characteristics of their own culture(s) and at least one other culture, and their impact on global issues	
PILO 9: Value ethical and socially responsible actions	
PILO 10: Demonstrate the attitude and/or ability to accomplish discovery and/or innovation	

GE course leaders should cover the mandatory PILOs for the GE area (Area 1: Arts and Humanities; Area 2: Study of Societies, Social and Business Organisations; Area 3: Science and Technology) for which they have classified their course; for quality assurance purposes, they are advised to carefully consider if it is beneficial to claim any coverage of additional PILOs. General advice would be to restrict PILOs to only the essential ones. (Please refer to the curricular mapping of GE programme: <u>http://www.cityu.edu.hk/edge/ge/faculty/curricular mapping.htm</u>.)

B. Please select an assessment task for collecting evidence of student achievement for quality assurance purposes. Please retain at least one sample of student achievement across a period of three years.

Selected Assessment Task		