

Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

This form is for the completion by the <u>Course Leader</u>. The information provided on this form is the official record of the course. It will be used for the City University's database, various City University publications (including websites) and documentation for students and others as required.

Please refer to the Explanatory Notes on the various items of information required.

Prepared / Last Updated by:

Name:	Prof. Zhengtao Xu Dr. Jung-Hoon Lee	Academic Unit:	Department of Chemistry
Phone/email:	3442 4679 / zhengtao@cityu.edu.hk 3442-7822/ junghlee@cityu.edu.hk	Date:	18 November 2019

City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

Part I Course Over	view
Course Title:	Crystallography/Solid-state Inorganic Chemistry
Course Code:	CHEM4084
Course Duration:	One Semester
Credit Units:	Four
Level:	B4
Proposed Area: (for GE courses only)	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	CHEM2006/BCH2006 (Principles of Inorganic Chemistry)
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	BCH4084 Crystallography/Solid-state Inorganic Chemistry
Exclusive Courses: (Course Code and Title)	Nil

Part II Course Details

1. Abstract

(A 150-word description about the course)

This is an interdisciplinary course on the fundamental and contemporary topics of crystallography and crystal structures, properties and technological applications. As the subject matter is not usually covered in an undergraduate curriculum, brief and intuitive introduction to the structures and properties of solid state materials will be presented on a level accessible for students in year two or above. Exemplary chapters including basic X-ray diffraction theory for structural studies, common structural types of inorganic solids, zeolite materials and recent advances in organic-inorganic porous materials, plasmonic materials, synthesis of solid state materials and their uses in energy, biomedical, electronic and environmental technologies. These technologies include: environmentally friendly catalysts, sensors, and low-cost fabrication of devices such as field effect transistors (FET), light-emitting diodes (LED), solar cells and fuel cells. We will also discuss the frequently used chemical reactions in the fabrication process of these materials.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*	Discov	ery-en	riched
		(if	curricu	ılum re	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	<i>A3</i>
1.	Carry out basic analysis of the concepts and principles in the	25%	✓		
	X-ray diffraction studies on solid state material.				
2.	Implement reliable and appropriate intellectual procedures for	25%		✓	
	correlating crystalline structures to materials properties, and				
	reliably implement it with accuracy and precision.				
3.	Critically evaluate experiments/processes in the preparation and	25%	✓	✓	✓
	applications of solid state materials/nanomaterials in the chemical				
	literature and effectively communicate this knowledge within				
	their special study fields.				
4.	Identify and uphold the social responsibilities of chemists, with	25%		✓	✓
	particular concern for biomedical and environmental issues in the				
	solid state and nanomaterials research.				
* If w.	eighting is assigned to CILOs, they should add up to 100%	100%		•	•

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA Brief Description		CII	O No).		Hours/week (if
		1	2	3	4	applicable)
Lectures and tutorials	Teaching and learning will be based on a combination of lectures and tutorials to elucidate the fundamental and contemporary topics of crystallography and crystal structures, properties and technological applications of solid-state inorganic materials.	√	√			
Lectures	Teaching and learning will primarily engage the students in the case studies of the important types of structures and properties of solid-state materials, including basic X-ray diffraction theory, inorganic solids, zeolite materials, organic-inorganic porous materials, plasmonic materials, and their uses in energy, biomedical, electronic and environmental technologies.	✓	•			
Group activities, Written assignments, presentations	Teaching and learning will primarily involve large and small group activities examining various molecules/materials/procedures, and the implications in modern technology development. Team work is emphasized in the form of group presentation and assignment of selected projects.			√	√	
Tutorials and recent primary research articles	Teaching and learning will entails extensive teacher-student interaction and supervised in-depths discussion among the students based on recent primary research articles, in order to foster independent and critical thinking of the students.	√			✓	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO	CILO No.			Weighting*	Remarks
	1	2	3	4		
Continuous Assessment: 40%	Continuous Assessment: 40%					
Tutorial Assignments or Quizzes	✓	✓	✓	✓	20%	
Group Presentations and reports			✓	✓	20%	
Examination: 60% (duration: 3 hours)						
Final Examination	✓	✓	✓	✓	60%	
* The weightings should add up to 100%.					100%	

The weightings should add up to 100%.

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Tutorial	Ability to express,	High	Significant	Moderate	Basic	Not even reaching
Assignments or	explain and apply the					marginal levels
Quizzes	core concepts and					
	equations in the					
	covered subjects of					
	crystallography and					
	solid-state inorganic					
	chemistry.					
2.Group	Clear presentation	High	Significant	Moderate	Basic	Not even reaching
presentations and	indicative of critical					marginal levels
reports	and logical thinking.					
	Ability to enhance the					
	group-works					
	experience, organize					
	a presentation with					
	cohesive content, to					
	analyse and evaluate					
	and scientific					
	problem/issues.					
3.Final examination	Ability to tackle the	High	Significant	Moderate	Basic	Not even reaching
	designer problems on					marginal levels
	crystallography and					
	crystal structures of					
	solid-state materials					
	utilizing the firm grip					
	on the acquired core					
	concepts and topical					
	contents.					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Solids and society. Industrial and environmental importance of solid state materials. Crystal structures, packing of molecules, basic diffraction theory. Properties of solids: porosity, conductivity and semiconductivity, luminescence, and plasmonics. Applications of solids: catalysts, field effect transistors, light-emitting diodes, solar cells, fuel cells, environment sensors, biomedical sensors. Preparation of inorganic-based solids and nano-particles&-materials and methods of crystal growth.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	The solid state: A. Guinier and R. Jullien, Oxford University Press, 1989.
2.	Introduction to Crystallography: D. E. Sands. Dover Publications, 1993
3.	Appropriate Selected Research Papers
NOTE:	
#	These books are only recommended for reading and should NOT be purchased without consulting your lecturer.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	
2.	
3.	

Annex
(for GE courses only)

A.	Please specify the Gateway Education Programme Intended Learning Outcomes (PILOs) that the course is
	aligned to and relate them to the CILOs stated in Part II, Section 2 of this form:

	GE PILO	Please indicate which CILO(s) is/are related to this PILO, if any (can be more than one CILOs in each PILO)
lear	monstrate the capacity for self-directed rning	(
tech hun	plain the basic methodologies and hniques of inquiry of the arts and manities, social sciences, business, and ence and technology	
PILO 3: Der	monstrate critical thinking skills	
PILO 4: Inte	erpret information and numerical data	
	oduce structured, well-organised and ent text	
PILO 6: Den skil	monstrate effective oral communication	
in a	monstrate an ability to work effectively a team	
thei	cognise important characteristics of ir own culture(s) and at least one other ture, and their impact on global issues	
acti	lue ethical and socially responsible ions	
acc	emonstrate the attitude and/or ability to complish discovery and/or innovation	for the CE and (And I. Arts and Humanities, And 2. Study

GE course leaders should cover the mandatory PILOs for the GE area (Area 1: Arts and Humanities; Area 2: Study of Societies, Social and Business Organisations; Area 3: Science and Technology) for which they have classified their course; for quality assurance purposes, they are advised to carefully consider if it is beneficial to claim any coverage of additional PILOs. General advice would be to restrict PILOs to only the essential ones. (Please refer to the curricular mapping of GE programme: http://www.cityu.edu.hk/edge/ge/faculty/curricular mapping.htm.)

B. Please select an assessment task for collecting evidence of student achievement for quality assurance purposes. Please retain at least one sample of student achievement across a period of three years.

Selected Assessment Task		