Capacity Estimation Principles and Methods

Prof. Dr.-Ing. Ingo A. Hansen
27-11-2017
1. Principles
2. Classification of capacity estimation models
3. Decomposition/disaggregation of network
4. Macroscopic capacity estimation
5. Analytical capacity estimation method UIC norm 406
 - Microscopic infrastructure and rolling stock model
 - Blocking time estimation
 - Compression of blocking time graphs
 - Microscopic capacity estimation
6. Simulation of track capacity consumption
7. Capacity consumption levels recommended by UIC
8. Conclusions
Objectives for capacity studies

• **Strategic:**
 - Infrastructure planning
 - Bottleneck analysis

• **Tactical:**
 - Dimensioning new lines & stations
 - Upgrading existing infrastructure
 - Additional tracks, switches, signals
 - Timetable alternatives
 - Capacity consumption
 - Timetable stability
 - Quality of service
 - Timetable robustness

• **Operational:**
Capacity issues of the HSR Hong Kong – Guangzhou

- Which is the optimal stop pattern of the new HSR line?
- How many trains can be operated during peak periods?
- Which is the capacity of the new terminal stations in Hong Kong and Guangzhou respectively?
- How robust is the new timetable against disturbances and disruptions?
Definition of Capacity

Maximum number of trains N that may be operated using a defined part of the infrastructure at the same time during a defined time period $[1/T]$; T: Time period $[24 \text{ h} = 1440 \text{ min}; 1 \text{ h} = 60 \text{ min}]$

- **Theoretical capacity** $C = T / \sum (t_{h\text{min}} + \Delta t)$
 Maximum number of trains N_T at scheduled order and speed without timetable margins; $t_{h\text{min}}$: minimum headway time
 Δt: running time difference between successive trains

- **Practical capacity** $C_p = T / \sum (t_{h\text{min}} + \Delta t + t_r + t_b + t_m)$
 Maximum number of trains N_P at scheduled order and speed including running time supplements t_r, buffer times t_b and track possession time t_m for infrastructure inspection and maintenance
Impact of speed and number of tracks on capacity

$T = 60 \text{ min}$

- **12/h**:
 - 1 fast line
 - 0 track
 - 12

- **8/h**:
 - 1 slow line
 - 8

- **2/h**:
 - 2 lines
 - 6/h

- **2 + 4**:
 - double track
 - single track
 - 1 line

- **1 line**: single track, sidings

 TU Delft

International Association of Railway Operations Research

Capacity estimation

6
Impact of station density, service pattern and overtakings on capacity

5 stations

4/h

T = 60 min

1 overtaking

2+2

2

2

2

S

2+2

6/h

3 overtakings

2+4

4

4

4

S

2+4

8/h

3 stations

1 overtaking

4+4

4

S

4+4

6/h

4 stations

2 lines

2+4

4

4

S

2+4

6/h

2 lines

4+2

2

2

S

4+2

2 overtakings

Capacity estimation
Capacity depends on

- **Timetable**
 - Train speed and homogeneity
 - Train order
- **Infrastructure**
 - Alignment
 - Number and length of tracks
 - Number of stations
 - Number of lines
 - Signalling & safety system
- **Rolling stock**
- **Weather**
- **Human behavior**
 - Travel time differences
 - Minimum headways
 - Timetable margins
 - At-grade crossings, flyovers, speed reductions, steep gradients
 - Single (bidirectional), passing loop
 - Double, merging/diverging/crossing, terminal, stabling
 - Fixed block {one-section/multiple track sections}
 - Automatic Train Protection (ATP)
 - Automatic Train Control (ATC)
 - Automatic Train Operation (ATO)
 - Moving block
Capacity balance

Source: UIC, 2004
Classification of timetabling and capacity estimation models

A. Stage of planning/implementation
- A.1 Strategic
- A.2 Tactical
- A.3 Operational

B. Type of model
- B.1 Deterministic
 - Analytical/Math. program
- B.2 Stochastic
 - Probabilistic

C. Scope
- C.1 Dedicated line(s)
 - single track
- C.2 Stations
 - multiple tracks
- C.3 Networks

D. Scale/discretization
- D.1 Macroscopic
 - km
 - minutes
- D.2 Microscopic
 - cm
 - seconds
Network disaggregation into line sections

Source: UIC (2013)

Fig. 12 - Covering a network with line sections
Network modelling:
Macrosopic

Microscopic
Macroscopic capacity estimation

Capacity:
\[C = \frac{T}{(t_{hmin} + \Delta t + t_p)} \]

Buffer time: \(t_p \)

Travel time difference: \(\Delta t \)

Track occupation:
\[\rho = n \cdot \frac{t_c}{T} \] [-]

Number of cycles/period:
\[n = \left\lfloor \frac{T}{t_c} \right\rfloor \]

Minimum time headway: \(t_{hmin} \)

Time headway: \(t_h \) [min]

Number of trains/period: \(N \)

Cycle time: \(t_c \) [min]
Example: macroscopic capacity estimation

Given: Arrival & departure times of 2 {IC, express, local} trains/h, timetable period $T = 60$ min, minimum time headway 3 min

<table>
<thead>
<tr>
<th>Train</th>
<th>Departure A</th>
<th>Arrival B</th>
<th>Departure A</th>
<th>Arrival B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercity</td>
<td>08:00</td>
<td>08:10</td>
<td>08:30</td>
<td>08:40</td>
</tr>
<tr>
<td>Express</td>
<td>08:03</td>
<td>08:16</td>
<td>08:33</td>
<td>08:46</td>
</tr>
<tr>
<td>Local</td>
<td>08:06</td>
<td>08:24</td>
<td>08:06</td>
<td>08:54</td>
</tr>
</tbody>
</table>

- Cycle time $t_c = 17$ min
- Number of cycles/h $n = 2$
- Mean time headway/cycle at station $= 17/3 = 5.7 \approx 6$ min
- Track section $= 27/3 = 9$ min
- Track occupation $\rho = 2 \times 17/60 = 57\%$
 \[= 2(3+3+(18-10)+3)/60\]
- Travel time difference between local and IC

Capacity
- Max. cycle number/period $n_{max} = 60/27 = 2.2$
- $C = 60/9 = 6$ trains/h
Drawbacks of macroscopic capacity estimation model

- **Inaccuracy** of scheduled travel (running and dwell) times
 - Linear train graphs: time loss due to acceleration, coasting and deceleration unknown/not disaggregated
 - Scale: times rounded-up to full minutes
 - Discrete point modelling of trains: variation of train length neglected
- **Validation** of scheduled minimum time headways missing
 - Use of given standard minimum headway values (safety constraints)
 - Variation of train speed and minimum headway times neglected
 - Impact of ATP, ATC, ATO neglected
- **Timetable margins** unknown
 - Standard running time supplements not verified nor differentiated
 - Amount of buffer times unknown

⇒ Insufficient precision and reliability of capacity estimation!
Analytical capacity estimation according to UIC norm 406
Microscopic model of station track yard and partial route nodes

Definition of partial route node:
Set of station tracks including switches and crossings in a station throat which adjoins lines and directions of operation
Microscopic infrastructure and rolling stock model

Input
- Graph modelling of track infrastructure
 - Track section and platform lengths, radii, gradients and max. speed
 - Location and distance between signals, switches, crossings, insulation joints, overhead contact line separators,
- Specification of signalling and safety systems
 - Blocking and clearance, signal aspects, overlaps
 - Train detection, location of track circuits/axle counters/fouling points
 - Interlocking, set-up and (partial) release of routes
 - Train protection, train control
 - Train regulation
- Train length, weight, resistance, tractive effort-speed diagram
Blocking time estimation

\[s = t_{cls} + t_{sw} + \frac{v}{2a} + \left(l_{bi} + l_{ci} + l_{tr} \right)/v + t_{clr} \]

Source Fig.15: UIC (2013)
Blocking time graphs

Open track

Interlocking area

Capacity estimation
Calculation of (scheduled) blocking time overlap

- t_b - blocking time
- t_{bc} - begin of blocking time
- t_{be} - end of blocking time

Path of 2nd train must be postponed by this amount to eliminate scheduling conflict in the regarded block section.
Blocking time graphs for ATC and ATO

Signalling with(out) ATC

Signalling with ATO

Time saved
Timetable ‘compression’ of blocking time graphs

Fig. 17 - Capacity consumption and residual capacity of a line section

Source: UIC (2013)
Timetable compression at single track section

Source: UIC (2013)
Capacity consumption: ‘compression’ of blocking time diagrams

Drawbacks: timetable dependency, transferability?
Microscopic capacity estimation

1. Estimation of blocking times $t_{bl\ i}$ of trains per line
2. Determination of minimum headway time $t_{h\ ij}$ between trains
 - at departure (according to different train sequences)
 - at arrival (stations)
 - at conflict points (merging/crossing of lines, long block, speed limit)
3. Determination of prevailing minimum headway times;
 mean minimum headway $t_{hm} = \sum (t_{hij} \cdot p_{ij}); p_{ij} = n_i \cdot n_j / n^2$
4. Estimation of (scheduled/feasible) number of train path n/n_{max}
5. Estimation of total track occupation time of compressed
 (scheduled) train graph $T_{toc} = n \cdot t_{hm}$
6. Estimation of (scheduled) track occupation $\rho_s = T_{toc}/T \ [%]$
7. Estimation of maximal track occupancy $\rho_{max} = T_{toc\ max}/T \ [%]$
Example: Blocking time estimation

Fixed block signal system

given
- train length $l_{tr} = 350$ m
- train speed $v = 160$ km/h
- block length $l_{bl} = 2000$ m
- overlap $l_{cl} = 50$ m
- switch time $t_{cl} = 1$ s
- sight distance $l_r = 300$ m
- reaction time $t_r = 5$ s

Minimum headway distance between trains

\[d_{min} = \frac{v^2}{2a} + l_{bl} + l_{tr} + l_{cl} + v(t_r + t_{cl}) \]
\[= 4647 \text{ m} \]

Minimum headway time

\[h_{min} = t_{cl} + \frac{v}{2a} + \frac{(l_{bl} + l_{tr} + l_{cl})}{v} + t_{clr} \]
\[= 104.5 \text{ s} \text{ in case of separate distant signal} \]
\[= t_r + \frac{(l_r + 2l_{bl} + l_{tr} + l_{cl})}{v} + t_{cl} \]
\[\text{in case of distant signal at main signal} \]
\[= 111.6 \text{ s} \]
Impact of block length and train speed on blocking time

$T_{\text{block}} = t_{\text{sw}} + t_{\text{sight}} + (l_{\text{br}} + l_{\text{block}} + l_{\text{safety}} + l_{\text{v}})/v + t_{\text{cl}}$

\Rightarrow minimum blocking time at very short block length and low speed ≈ 80 km/h!
Simulation of track capacity consumption

Macroscopic Models
- Simple link-node graph
- Trains modelled as discrete points (without length)
- Running times rounded up/scaled in minutes
 - possibly including acceleration/deceleration time loss
- Dwell times varying per station class and line (train type)
- Minimum headway times rule-based (implicit model of signalling and safety constraints)

⇒ **Shortcomings:**
- Running time margin, buffer times and route conflicts unknown

⇒ **Microscopic capacity estimation** *60 times* more accurate!
Capacity consumption elements

- a) infrastructure occupation
- b) buffer time
- c) crossing buffer
- d) suppl. for maintenance
- e) usable capacity
- f) lost capacity

Capacity consumption levels proposed by UIC

Capacity Consumption [%] = \(\frac{\text{Occupancy Time} + \text{Additional Times} \times 100}{\text{Defined Time Period}} \)

<table>
<thead>
<tr>
<th>Type of line</th>
<th>Peak hour</th>
<th>Daily period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated suburban passenger traffic</td>
<td>85 %</td>
<td>70 %</td>
</tr>
<tr>
<td>Dedicated high speed lines</td>
<td>75 %</td>
<td>60 %</td>
</tr>
<tr>
<td>Mixed traffic lines</td>
<td>75 %</td>
<td>60 %</td>
</tr>
</tbody>
</table>

Capacity Consumption [%] = \(\frac{\text{Occupancy Time} \times (1 + \text{Additional Time Rate}) \times 100}{\text{Defined Time Period}} \)

Additional Time Rate [%] = \(\frac{100}{\text{Occupancy Time Rate}} - 1 \) \times 100

Table 3: Proposed occupancy rates and additional time rates for nodes

<table>
<thead>
<tr>
<th>Type of node area</th>
<th>Concatenated Occupancy Rate</th>
<th>Additional Time Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch area</td>
<td>60 % ... 80 %</td>
<td>67 % ... 25 %</td>
</tr>
<tr>
<td>Track area</td>
<td>40 % ... 50 %</td>
<td>150 % ... 100 %</td>
</tr>
</tbody>
</table>

Table 2: Proposed additional time rates for lines

<table>
<thead>
<tr>
<th>Type of line</th>
<th>Peak hour</th>
<th>Daily period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated suburban passenger traffic</td>
<td>18 %</td>
<td>43 %</td>
</tr>
<tr>
<td>Dedicated high-speed line</td>
<td>33 %</td>
<td>67 %</td>
</tr>
<tr>
<td>Mixed-traffic lines</td>
<td>33 %</td>
<td>67 %</td>
</tr>
</tbody>
</table>

“Acceptable quality of service is represented by capacity consumption values of up to and including 100%“ (p. 30)

Source: UIC (2013)
Shortcomings of UIC capacity estimation method

- Enrichment of “compressed” blocking time graph not feasible for links with changed number of tracks (branching, overtaking)
- Capacity of single track operated bidirectionally depends on market acceptance (fleeting of train paths)
- Capacity of station tracks and route nodes depends on routing and synchronisation requirements for passenger transfer connections
- Essentially still deterministic model
 => Stochastic modelling of process times necessary to determine robustness

Source: Lindner, 2011
Conclusions

- Track capacity is influenced by the timetable, infrastructure, signalling and safety systems, rolling stock, weather and human behaviour.
- Macroscopic capacity estimation models simplify infrastructure, route and signalling constraints but can support strategic network and timetable planning.
- Microscopic capacity models can accurately estimate minimum headways, capacity consumption and timetable margins for different signalling and safety systems; calibration of real train speed profiles and dwell times needed.
- UIC compression method is deterministic and requires multiple stochastic simulation runs to estimate capacity & stability of different timetable options.
- Impact assessment of train speed changes/acceleration/deceleration on minimum headway times, capacity and train delays remains necessary.
- Which is the capacity of the new HSR terminal in Hong Kong?
Literature

- Hertel, G. (1992), Die maximale Verkehrsleistung und die minimale Fahrplanempfindlichkeit auf Eisenbahnstrecken, ETR 41(10), 665-671
- Landex, A. (2009), Evaluation of Railway Networks with Single Track Operation Using the UIC 406 Capacity Method, Networks and Spatial Economics 9(1), 7-23
- Pachl, J. (2002), Railway Operation and Control, VTD Rail Publishing
- Schwanhäußer, W. (2009), Wirtschaftlich und betrieblich optimale Zugzahlen auf Eisenbahnstrecken, ETR, 9, 488-495
- Shi, L. (2011), Betriebliche Maßnahmen zur Optimierung der Leistungsfähigkeit der Bahnstrecken und zur Erhöhung der Reisegeschwindigkeit des Personenverkehrs in China (in German), Ph.D. thesis, University of Hannover

Capacity estimation
The performance of many railway networks and the quality of service offered is becoming more and more critical. The main issue to be addressed are the increasing traffic volumes and making the best use of the available capacity, at the same time resolving train scheduling and management problems.

This is an updated, revised and extended edition of ‘Railway Timetabling & Traffic’ published in 2008. It describes the state-of-the-art methods of railway timetabling and optimisation, capacity estimation, train operations analysis and modelling, simulation, rescheduling and performance assessment. The intention is to stimulate their broader application in practice and to highlight current and future research areas. It is directed at academics, Masters and PhD students, as well as professionals from the railway industry. It will also be of interest to the public authorities that tender, monitor and perhaps fund railway service provision. The overall aim is to improve the attractiveness and efficiency of the train services which can be offered to the public.

The key to achieving a higher efficiency and quality of train operations is an awareness of the impact of availability, reliability and robustness of the subsystems on train processes. A deeper insight into the probability of incidents and the propagation of train delays depends on a thorough analysis of real world railway operations and the feedback obtained. This leads to an optimisation of the timetable and a network-wide improvement in traffic management performance.

This know-how should increase the efficiency of the railway system, making it more attractive for regular, occasional and new customers, and ensure that the railways continue to innovate. They will then be able to make the maximum contribution possible to the transport needs of the future.
Contents

1 Introduction ...9
2 Timetable Design Principles ...13
3 Infrastructure Modelling ..47
4 Running Time Estimation ...65
5 Energy-Efficient Railway Operation91
6 Queueing ..117
7 Timetable Stability Analysis ..133
8 Optimisation Models for Railway Timetabling155
9 Bi-level scheduling in highly utilised networks175
10 Simulation ...191
11 Statistical Analysis of Train Delays and Movements217
12 Train delay prediction ..237
13 Rescheduling ..253
14 Performance Evaluation ..275
15 Economic performance assessment in railways295
16 Conclusions ..307

Capacity estimation 36