Railroad Safety & Risk Analysis Using North American Accident Database Systems

Chris Barkan

Professor

George Krambles Director Rail Transportation and Engineering Center (RailTEC)

29 November 2018

3rd Workshop on Railway Operation for Safety and Reliability

Thank you for the invitation!

Department of Systems Engineering and Engineering Management City University of Hong Kong

29 November 2018, City University of Hong Kong

City University of Hong Kong

Supporters of RailTEC Safety & Risk Research

and various petroleum, chemical and refining companies

Acknowledgements

- Research conducted by a number of talented and dedicated students, past and present
- Ph.D. Samantha Chadwick Athaphon Kawprasert Chen-Yu Lin Xiang Liu M. Rapik Saat Brandon Wang
- M.S. Jesus Aguilar Weixi Li Manuel Martin Kaiyu Wang Lijun Zhang
- B.S. Jaemin Kim Sam Pal Max Potvin Geordie Roscoe

Outline of Presentation

- Introduction to North American rail safety trends
- Types of data needed for railroad safety and risk analysis
- Review several projects:
 - Optimizing Tank Car Safety Design
 - Multiple Tank Car Release Risk
 - Analysis of Train Derailment Rates, Causes, and Changes
 - Loaded versus Empty Unit Train Derailment Cause Analysis
 - Adjacent Track Accident Risk Model Development

Substantial decline in major North American railroads' mainline derailment rate: 2006 - 2015

- 50% reduction in mainline derailment rate in this time period
- However, this improvement occurred at the same time as an even more dramatic increase in hazardous dangerous goods traffic

Decline in railroad derailment rate coincided with increase in flammable liquid traffic

- Beginning in the mid-2000s flammable liquid traffic, notably ethanol and petroleum crude oil grew more than 10-fold
- Most of this traffic was moving in large unit trains rather than single carload shipments
 RailTEC at

RailTEC at Illinois | 7

Safety paradox, derailments were declining but serious incidents were increasing

 Substantial increase in rail transport of ethanol and petroleum crude oil led to a corresponding increase in derailments involving these products

New Brighton, PA

Cherry Valley, IL

Lac-Mégantic, QC

Casselton, ND

Aliceville, AL

Mt. Carbon, WV

... and a number of others

Decline in accidents part of a longer-term trend, but shows evidence of diminishing returns

- Eliminating the remaining accident causes is an increasingly stubborn problem
- Requires more sophisticated data and analytical techniques to prioritize investment in most effective risk reduction strategies

Accidents per Million Train-Miles

Railroad freight train risk reduction strategies

Infrastructure

e.g. Track upgrade Reduce accident occurrence

Railcar/Container

e.g. Tank car safety design Reduce incidence and severity of releases

Operational

e.g. Speed reduction Reduce accident severity

Routing

e.g. Alternative routings Reduce impact of releases

Railroad data systems needed for safety and risk analysis

- Accidents and incidents what, when, where, why & how occurred
- Operations and traffic type, routing and exposure
- Infrastructure routes and characteristics
- Rolling stock safety design characteristics

RailTEC at Illinois | 11

Railroad accident and incident data

US DOT Federal Railroad Administration

- Highway-rail grade crossing accident/incident (58 variables + narrative)
- Rail equipment accident/incident (80 variables + narrative)
- Death, injury, or occupational illness (>40 variables + narrative)

US DOT Pipeline and Hazardous Materials Administration

• Hazardous materials incident report (90 variables + narrative)

RSI-AAR Railroad Tank Car Safety Research and Test Project

- Railroad tank car accident database
 - Train accident characteristics
 (37 variables and >30,000 records)
 - Damage and performance of tank cars involved in accidents (34 variables and >48,000 records)

Railroad operations and traffic

Association of American Railroads

- TRAIN II Detailed records of railcars, lading transported, and routing of most rail shipments in North America
- Analysis of Class 1 Railroads Detailed annual summary of railroad operating statistics

US Surface Transportation Board

 Waybill Sample – Statistically robust sample of rail shipment movements over US rail network

Major North American railroads

 Operating data – Detailed data on train makeup, movements, routing, schedules, traffic composition and volume, railcars, and commodities transported (proprietary)

Railroad infrastructure route characteristics

Association of American Railroads

 Analysis of Class 1 Railroads – Annual summary of certain railroad infrastructure characteristics

US DOT Federal Railroad Administration

• Grade crossing inventory file – Data on all US grade crossings

Major North American railroads

• Detailed data on track characteristics, train control systems, and numerous other characteristics (proprietary)

Geographic Information System (GIS) databases

- US Bureau of Transportation Statistics: National Transportation Atlas Database – GIS database of US rail network
- US Census Service: TIGER* data GIS database of US population distribution
- Various other GIS databases on numerous features of interest including environmental characteristics, waterways, etc.

* Topologically Integrated Geographic Encoding and Referencing

Railroad rolling stock design characteristics

Association of American Railroads

 UMLER (Universal Machine Language Equipment Register) Detailed data on nearly all rail rolling stock operating in North America

RSI-AAR Railroad Tank Car Safety Research and Test Project

• Car design properties and lading transported for tank cars involved in accidents (40 variables)

Examples of recent and current research

- Optimizing Tank Car Safety Design
- Multiple Tank Car Release Risk
- Analysis of Train Derailment Rates, Causes, and Changes
- Loaded versus Empty Unit Train Derailment Cause Analysis
- Adjacent Track Accident Risk Model Development

Fiberglass Tank Shell Thermal Insulation Tank 9/16" No Steel Mir **C** 28,32 ▶ 286,0 Bottom Enhanced *This is an artist's conceptual r

Fundamental tradeoff in tank car design: Safety versus efficiency

- Principal approaches to enhance tank car safety design:
 - Thicker/stronger head and/or head shield
 - Thicker/stronger shell
 - Adding top fittings protection
 - Removing bottom fittings
- Stronger tank and better-protected fittings *improve accident performance*
- Also increase weight and cost, thereby *reduce transportation efficiency*
- Thus there is a tradeoff between enhanced safety and transport efficiency

Change in light weight and probability of release for each tank car safety design modification

Example: 263,000-lb maximum GRL for 30,000-gallon baseline 111 tank car

Pareto optimal set of flammable liquid tank car design options

Multiple Tank Car Release Risk

Xiang Liu, Ph.D.

Graduate Research Assistant

now

Assistant Professor

Rutgers University

Previous tank car safety research focused on single car performance

 Optimization techniques and tank car data used to quantitatively identify combinations of design features that maximized tank car safety performance*

- This approach alone was successful when focused on single-car release incidents such as environmentally sensitive chemicals (ESC) or toxic inhalation hazard materials (TIH)
- Substantial growth in unit-trains transporting petroleum and alcohol suggested need to consider probability of multiple-car release events[†]

Safety performance of flammable liquid tank cars derailed in accidents

* CPR(100) = Probability that a tank car derailed in an FRA-reportable accident releases ≥ 100 gallons due to the impacts it receives in the derailment

Events leading to a release incident

Analytical framework for estimating probability distribution of number of tank cars releasing

Effect of tank car safety design on estimated interval* between multiple-car release incidents

Minimum Number of Cars Releasing

* Assuming 2012 levels of crude oil and alcohol tank car traffic (ca. 550,000 carloads) *Ceteris paribus*, the estimated intervals will be reduced in proportion to increases in traffic

Analysis of Train Derailment Rates, Causes, and Changes

Brandon Wang

Graduate Research Assistant

Frequency vs Severity of Mainline Derailments

Number of Derailments / Trillion Ton-Miles

Changes in Derailment Rate by Cause Group: 2006 – 2010 vs 2011 - 2015

- Broken rails or welds showed the most reduction, followed by track geometry
- Derailments due to extreme weather increased

Change in Number of Accidents per Trillion Ton-Miles

Loaded versus Empty Unit Train Derailment Cause Analysis

Weixi Li Graduate Research Assistant Geordie Roscoe Undergraduate Research Assistant

Summary statistics for loaded vs. empty unit train derailments

Loading Condition	Number of Accidents	Tons (1,000s)	Train Length ⁺	Average Speed ⁺	Average Number of Cars Derailed*	Average POD*
Loaded	1,536	14.2	106.9	25.1	11.5	54.4
Empty	303	3.0	106.8	24.8	8.9	41.8
Other	4,180	7.1	77.9	22.5	8.3	34.2

* Denotes that significant difference for loaded and empty train derailments

⁺ Denotes no significant difference between loaded and empty train derailments

- Loaded unit trains were five times more frequent than empty unit trains
- Loaded unit trains weighed over four times more than empty trains
- Similar train length and speed for both loading conditions
- Loaded trains tended to derail more cars
- Position of first derailed (POD) car was farther back in loaded trains than empty

Substantial difference in most frequent causes for loaded & empty unit train derailments

Rank	Loaded Train Causes	Number	Empty Train Causes	Number
1	Broken Rails or Welds	288	Severe Weather	33
2	Broken Wheels (Car)	175	Broken Rails or Welds	31
3	Other Axle/Journal Defects (Car)	127	Track Geometry (excl. Wide Gauge)	25
4	Bearing Failure (Car)	122	Other Wheel Defects (Car)	24
5	Buckled Track	93	Buckled Track	15
6	Track Geometry (excl. Wide Gauge)	80	Lading Problems	13
7	Wide Gauge	74	Other Brake Defect (Car)	10
8	Roadbed Defects	44	All Other Car Defects	10
9	Turnout Defects - Switches	41	Train Handling (excl. Brakes)	9
10	Other Rail and Joint Defects	36	Non-Traffic, Weather Causes	8

Causes in red are unique to loaded unit trains, causes in blue are unique to empty unit trains and causes in black are shared by the two loading conditions RailTEC at Illinois | 32

Adjacent Track Accident Risk Model Development

Chen-Yu Lin

Graduate Research Assistant

Adjacent track accidents (ATA)

- ATAs refer to train accident scenarios where derailed railroad equipment intrudes upon adjacent tracks, causing operational disruptions and potential subsequent collisions on the adjacent track(s)
- Other ATA scenarios include collisions between trains on adjacent tracks (raking collisions), turnouts, and railroad crossings (side collisions)
- A typical adjacent track accident scenario:

Integrated ATA risk assessment model

- Combine probability models for initial accident, intrusion and train presence on adjacent tracks to develop a holistic risk assessment model for ATA
- Account for common affecting factors in different probability models

ATA model application: hypothetical shared rail corridor

Calculate segment-specific ATA risk

 $R_i = P(D)_i \times P(I|D)_i \times P(T|I|D)_i \times C_i$

Identify high ATA risk segments

Conclusion: Efficient investment in train safety is essential

- Continued decline in derailment rates benefits the rail industry and the public
- Continued pressure, both internally and externally, for further improvement
- Most effective means of improving train safety becomes less obvious (and often more costly) as incident rate declines
- Industry (and government) must stay focused on identifying the most effective means for improvement
- Increasingly sophisticated data and analytical methods can be used to understand the most efficient ways to invest in safety improvements

Thank you very much! Questions?

RailTEC at Illinois | 40

APPENDICES

Current RailTEC Safety and Risk Research Topics

Derailment analysis

- Factors affecting downward trend and rate
- Effect of train length on derailment occurrence
- Quantitative assessment of impact of speed restrictions
- Early detection of changes in derailment rate
- Loaded vs empty train unit-train derailment occurrence and causes

Hazardous materials transportation safety and risk

- Unit vs manifest train risk of hazardous materials transport
- Risk assessment tools for multiple railroad tank car releases
- Risk analysis of toxic inhalation hazard tank car implementation
- Grade crossing risk to railroads
 - Derailment probability due to grade crossing incidents
 - Consequences of grade crossing incidents
- Passenger train derailments
 - Causal analysis and comparison to freight trains
 - Quantitative risk analysis of adjacent-track train accident risk

Three-factor model of mainline freight train derailment rate: track class, method of operation & traffic density

How did the distribution of derailments change between 2006-2010 and 2011-2015?

	Number of Derailments: 2006 - 2010							
Traffic	Method of	FRA Track Class						
(MGT)	(MO)	1	2	3	4	5	Total	
<20	Non-Signaled	49	91	73	55	3	271	
	Signaled	17	31	49	52	8	157	
>20	Non-Signaled	8	22	30	77	5	142	
220	Signaled	31	94	130	387	141	783	
		105	238	282	571	157	1,353	

Number of Derailments: 2011 - 2015

Traffic Density (MGT)	Method of Operation — (MO)	FRA Track Class					
		1	2	3	4	5	Total
<20	Non-Signaled	28	48	43	43	0	162
	Signaled	17	31	44	62	10	164
≥20	Non-Signaled	7	10	8	27	0	52
	Signaled	25	61	97	312	102	597
		77	150	192	444	112	975

*Gross Ton-Miles: 2006 to 2010 = 16.7 trillion, 2011 to 2015 = 17.2 trillion

Change in Estimated Derailment Rate by FRA Track Class

RailTEC at Illinois | 45

Change in Estimated Derailment Rate by Method of Operation

Change in Estimated Derailment Rate by Traffic Density

Did Derailment Causes Show Uniform Rates of Change?

- Was the decline in accident causes proportional to their frequency or did some decline at a rate greater (or less) than average?
- Statistical analysis of the change in cause-specific derailment frequency

Number of Derailments

Estimated Probability Distribution and Actual Number of Cars Releasing

RailTEC at Illinois | 49

Cumulative Frequency Distribution of Loaded, Empty and Other Type Train Derailments

RailTEC at Illinois | 50