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The State of South Carolina

South Carolina: One of the 13 Original US Colonies.

(http://en.wikipedia.org/wiki/Hong Kong) (https://en.wikipedia.org/wiki/Richland_County, South_Carolina)



ol el
The University of South Carolina

The University of South Carolina (established in 1801) is a
public university in Columbia, South Carolina, United States,
with seven satellite campuses. Its main campus covers over
359 acres (145 ha) in downtown Columbia.
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Railroad Ballast

» Typically “uniformly” graded unbound aggregates
« Similar to highway base course

« NOT a continuous medium
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Ballast Support Issue

ttt EESER: ttt

I |
ZEEIN EEERE

T1rety




L - 1
Ballast Supp Issue

How to detectﬁiﬁerent support conditions | | the field?
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Ballast Support Issue

How to reasonably detect different support conditions in the field?



Ballast Support Condition Detection

- Pressure cell =

Fd

S

= P

Subballast layer 4

 Problems: 1) Destructive Test
2) High Failure Rate
3) Unreliable Results

4) Expensive in terms of time and labor



Research Objectives

* Objective: Develop a
non-intrusive method to quantify
support conditions and their
variation over time/tonnage

 Purpose: Provide rail industry
with a tool to better prioritize
surfacing

« Challenge: It is inherently difficult
to quantify the pressure
distribution at the crosstie-ballast
interface
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Support Condition Back-Calculator Facts
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2-D Crosstie Bending Model

* Crosstie divided into 6 bins of equal width:
— Each bin consists a percentage of total reaction force

* 9 model inputs:
— Known bending moments from 7 locations (5 from strain gauges, 2 from end
conditions)
— 2 approximated rail seat loads (from load cell, WILD, or rail-mounted strain
gauges)
» Rail seat load is assumed to be uniformly distributed across rail seat

* 2 boundary conditions:
— Force equilibrium (all bins should sum to approximately 100%)

— Force value for each bin should not be negative
Rail Seat Load Rail Seat Load
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Support Condition Back-Calculator Facts
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Optimization Algorithm:

Simulated Annealing
* Definition:

— A probabilistic technique for approximating the global
optimum of a given function

 Benefits:

— Has a probability of accepting a “worse” solution
— Pareto distribution is chosen as random variable generator

— Avoids stopping at a local optimum

Wikipedia: Simulated Annealing



2-D Crosstie Bending Model
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2-D Crosstie Bending Model
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2-D Crosstie Bending Model
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2-D Crosstie Bending Model
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2-D Crosstie Bending Model
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Support Condition Back-Calculator Facts
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Laboratory Experimentation Equipment

« Loading frame - Static Load Testing Machine (SLTM) at RAIL

e

Lyl

« Supporting rubber pads




O e 2
Influence of Support Condition on

Crosstie Bending Moments
Rail Seat Load: 10 kips (44.5 kN), Healthy Crosstie
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Lab Setup and Back-Calculator Result:
Lack of Rail Seat Support
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Comparison between Lab Support
Conditions and Back-Calculator Results
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Field instrumentation Site Layout

» 50 surface strain gauges installed on 10 crossties
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* Nearby Wheel Impact Load Detector (WILD) site provides

wheel load data
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Ballast Pressure Limit States

« Ballast pressure calculated based on uniform reaction
assumption: 32 psi

« AREMA allowable ballast pressure under concrete
crossties: 85 psi

« Ballast pressure calculated based on AREMA
allowable subgrade bearing stress (25 psi) using
Talbot equation: 55 psi

16.8
h — ( pa)4/5
Pc

Where, h = Support ballast depth
p, = Stress at bottom of tie (top of ballast)
p. = Allowable subgrade stress
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Distribution of Ballast Pressure for

InstHFﬂumented Crosﬁﬁties
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Distribution of Ballast Pressure under Loaded Axle:
8:00 AM, 5/26/2015
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Distribution of Ballast Pressure under Loaded Axle:
8:00 AM, 5/26/2015
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Distribution of Ballast Pressure under Loaded Axle:
8:00 AM, 5/26/2015
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8:00 AM, 5/26/2015
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What is Railroad 4.0?

Mechanization, Mass production,
water power, steam  assembly line,
power electricity

Computer and Cyber Physical
automation Systems

Industry 4.0 is the current trend of automation and data exchange in
manufacturing technologies. It includes cyber-physical systems, the Internet of
things and cloud computing. (Wikipedia)

Railroad Infrastructure 4.0 is the current trend of automation and data exchange in
railroad infrastructure . It includes cyber-physical systems, the Internet of
things and cloud computing.
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Automatic Track Support
Condition Assessment System
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L — .13
Automatic Track Support
Condition Assessment System

Ballast Support Reduction (in)

G

U.S. Department of Transportation Canga et al. (2017) JRC Canga et al. (2018) AREMA
Federal Transit Administration Cangaetal. (2017) APTA Canga et al. (2018) CBM




Ballast Pressure Index (BPI)

« A quantifiable value which estimates the uniformity of
ballast distribution below a crosstie

« Ballast Pressure Index (BPI) is defined as the
calculated ballast pressure, normalized to the
theoretical, uniform ballast pressure within each bin

P
BPIl = —
Ih
Where, BPI| = Ballast Pressure Index

P. = Pressure calculated from back-calculator
P, = Pressure based on assumed uniform support



Ballast Pressure Index for Loaded Axle:
8:00 AM, 5/26/2015

Zone 2 Zone 1

Tie10 Tie9 Tie8 Tie7 Tieb TieS Tied4d Tied3 Tie2 Tie1
Void Uniform Support Hotspot

(BP1=0) (BP1=1.0) (BPI = 2.66)



Ballast Pressure Index for Loaded Axle:
8:00 AM, 7/8/2015

Zone 2 Zone 1

Tie10 Tie9 Tie8 Tie7 Tieb TieS Tied4d Tied Tie2 Tie1
Void Uniform Support Hotspot

(BP1=0) (BP1=1.0) (BPI = 2.66)



Ballast Pressure Index for Loaded Axle:
8:00 AM, 8/14/2015

Zone 2 Zone 1

Tie10 Tie9 Tie8 Tie7 Tieb TieS Tied4d Tied Tie2 Tie1
Void Uniform Support Hotspot

(BP1=0) (BP1=1.0) (BPI = 2.66)



Ballast Pressure Index for Loaded Axle:
10:00 AM, 8/14/2015

Zone 2 Zone 1

Tie10 Tie9 Tie8 Tie7 Tieb TieS Tied4d Tied Tie2 Tie1
Void Uniform Support Hotspot

(BP1=0) (BP1=1.0) (BPI = 2.66)



Ballast Pressure Index for Loaded Axle:
1:00 PM, 8/14/2015

Zone 2 Zone 1

Tie10 Tie9 Tie8 Tie7 Tieb TieS Tied4d Tied Tie2 Tie1
Void Uniform Support Hotspot

(BP1=0) (BP1=1.0) (BPI = 2.66)
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2-D Crosstie Bending Model

* Crosstie divided into 6 bins of equal width:
— Each bin consists a percentage of total reaction force

* 9 model inputs:
— Known bending moments from 7 locations (5 from strain gauges, 2 from end
conditions)
— 2 approximated rail seat loads (from load cell, WILD, or rail-mounted strain
gauges)
» Rail seat load is assumed to be uniformly distributed across rail seat

* 2 boundary conditions:
— Force equilibrium (all bins should sum to approximately 100%)

— Force value for each bin should not be negative
Rail Seat Load Rail Seat Load
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2-D Crosstie Bending Model

» Crosstie divided into « bins of equal width:
— Each bin consists a percentage of total reaction force

«  model inputs:
— Known bending moments from « locations (« from strain gauges, 2 from end
conditions)
— 2 approximated rail seat loads (from load cell, WILD, or rail-mounted strain
gauges)
» Rail seat load is assumed to be uniformly distributed across rail seat

* 2 boundary conditions:
— Force equilibrium (all bins should sum to approximately 100%)

— Force value for each bin should not be negative
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Methods to Measure Surface Strain

Infinite number of surface strain measure by laser beam

Able to back-calculate crosstie stiffness and input load as long as the number of
bins is smaller than the number of the surface strain



Methods to Measure Surface Strain

offline

VISA Database

Image Analysis

Inspection
Quantities

‘ Deflection

®—
@

@ Input Layer @ Hidden Layer @ Output Layer

Wearing,
Fasteners ...

Data Acquisition — What You Can See
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Methods to Measure Surface Strain

Data Acquisition — What Drones Can See
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Application in High Speed Rail




Related Experience

Computing Platform &
Fieldable ATR, Treat Assessment

w

Deep Learning & Automatic Target
Recognition (ATR) Algorithms

L] -
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RaspberryPi 3
(low-end computing

Feature Selection & Machine Learning-based Target Recognition

Hidden Output

Training
samples

3
neural network (NN) Classification




Extended Track Inspection Framework

Module I: Track & Vehicle Database Development
g ; _ :

Module II: Active Learning &
Data-driven FEM ROM of VTI

4 Deep Neyral Network N

Track Health Index
Excellent
Good

Multi-class classification

medium.

intelligent Risk Assessment and Prediction System
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