

A novel approach to modelling time-between failures of a repairable system

Dr Shaomin Wu Kent Business School

Wu, S., 2018. A failure process model with the exponential smoothing of intensity functions. European Journal of Operational Research. <u>https://doi.org/10.1016/j.ejor.2018.11.045</u>

- Consider a series system composed of three components
 - _____2_____3

Assumptions

- Once a component fails, it is immediately replaced with an identical one,
- The failure mode is not recorded/unknown
- The failure process of the system is a super-imposed renewal process (SRP).

• The GP has been extensively studied since its introduction in 1988, mainly due to its elegance and convenience in deriving mathematical properties in applications

Limitations in the existing models

- Limitations of the practical application of SRP (super-imposed renewal process):
 - In reality, the number of failures of a system is limited
 - Too many parameters in the SRP
 - →uncertainty of the parameters in a model becomes large
- A limitation in the existing models: Only considering the same effectiveness of maintenance upon failures in the lifecycle of a system
 - Replacing different components causes different effectiveness of maintenance
- A possible solution
 - Constraint: unknown failure modes + limited number of failures
 - Solution: use the Exponential Smoothing methods in failure intensity function

• Assume we are interested in a time series $x_1, x_2, ..., x_n$

- Assume we are interested in a time series $x_1, x_2, ..., x_n$
- Model 1: Simple exponential smoothing method

 $\hat{x}_{n+1} = \alpha x_n + (1-\alpha)\hat{x}_n$

- where: \hat{x}_n is the last period's forecast; x_n is the last periods actual value; and $0 < \alpha < 1$
- We modify the simple exponential smoothing method and think of the following method

$$\hat{x}_{n+1} = \frac{1}{p} \sum_{i=0}^{p-1} \alpha^{i} x_{n-i}$$

- Assume we are interested in a time series $x_1, x_2, ..., x_n$
- Model 1: Simple exponential smoothing method

 $\hat{x}_{n+1} = \alpha x_n + (1-\alpha)\hat{x}_n$

- where: \hat{x}_n is the last period's forecast; x_n is the last periods actual value; and $0 < \alpha < 1$
- We modify the simple exponential smoothing method and think of the following method

$$\hat{x}_{n+1} = \frac{1}{p} \sum_{i=0}^{p-1} \alpha^{i} x_{n-i}$$

- Understanding the time series from a failure process perspective
 - > x_n is the time to the *n*th failure, i.e., it is the time to the latest failure, i.e., "*youngest failure*" ..., x_{n-p+1} is the time to the (n p + 1)th failure, i.e., "*older failure*"
 - $\succ \alpha^{i} x_{n-i}$ implies that more weight on the oldest failure

- Model 1: Simple exponential smoothing method
 - We modify the simple exponential smoothing method and think of the following method

$$\hat{x}_{n+1} = \frac{1}{p} \sum_{i=0}^{p-1} \alpha^{i} x_{n-i}$$

- Understanding the time series from a failure process perspective
 - > x_n is the time to the *n*th failure, i.e., it is the time to the latest failure, i.e., "*youngest failure*" ..., x_{n-p+1} is the time to the (n p + 1)th failure, i.e., "*older failure*"
 - $\succ \alpha^{i} x_{n-i}$ implies that more weight on the oldest failure

Model 1: Simple exponential smoothing method

$$\hat{x}_{n+1} = \frac{1}{p} \sum_{i=0}^{p-1} \alpha^{i} x_{n-i}$$

Model 2: Moving average method. Let *α* = 1, then we obtain the moving average model

$$\hat{x}_{n+1} = \frac{1}{p} \sum_{i=0}^{p-1} x_{n-i}$$

Model 1: Simple exponential smoothing method

$$\hat{x}_{n+1} = \frac{1}{p} \sum_{i=0}^{p-1} \alpha^{i} x_{n-i}$$

Model 2: Moving average method. Let *α* = 1, then we obtain the moving average model

$$\hat{x}_{n+1} = \frac{1}{p} \sum_{i=0}^{p-1} x_{n-i}$$

- We consider two models
 - The exponential smoothing of intensity model (ESI)
 - The simply moving average of intensity model (SMI)

Consider a series system composed of three components

Consider a series system composed of three components

 At the 1st failure, we assume one of the components, component 1 say, fails;

• Consider a series system composed of three components

- At the 1st failure, we assume one of the components, component 1 say, fails;
- At the 2nd failure, we assume another component, component 2 say, fails

• Consider a series system composed of three components

2

 At the 1st failure, we assume one of the components, component 1 say, fails;

3

- At the 2nd failure, we assume another component, component 2 say, fails
- At the 3rd failure, we assume component 3 fails

• Consider a series system composed of three components

2

 At the 1st failure, we assume one of the components, component 1 say, fails;

3

- At the 2nd failure, we assume another component, component 2 say, fails
- At the 3rd failure, we assume component 3 fails
- At the 4th failure, we assume component 1 fails, ...

$$\vee$$
 VC1 \rightarrow VC2 \rightarrow VC3 \rightarrow VC1 \rightarrow VC2 \rightarrow VC3 \rightarrow

The exponential smoothing of intensity model

- Assume a real-world system is composed of *m* components. The reliability of each component is unknown.
- We approximate the failure process of the above system with that of the following virtual system.
- Assume a system composed of *m* components with failure rate functions $\frac{1}{m}\rho^{m-1}\lambda_0(t), \frac{1}{m}\rho^{m-2}\lambda_0(t), \dots, \frac{1}{m}\lambda_0(t)$, respectively. That is, before the 1st failure of the system, the failure intensity function of the system is assumed to be

$$\lambda(t|\mathcal{H}_{t-}) = \frac{1}{m} \sum_{k=0}^{m-1} \rho^{m-k-1} \lambda_0(t)$$

The exponential smoothing of intensity model

• Then for $1 \le N_t < m$, we have

$$\lambda(t|\mathcal{H}_{t-}) = \frac{1}{m} \left(\sum_{k=0}^{N_t - 1} \rho^{m-k-1} \lambda_0 \left(t - T_{N_k - k} \right) + \sum_{k=N_t}^{m-1} \rho^{m-k-1} \lambda_0(t) \right)$$

The exponential smoothing of intensity model

• Then for $1 \le N_t < m$, we have

$$\lambda(t|\mathcal{H}_{t-}) = \frac{1}{m} \left(\sum_{k=0}^{N_t - 1} \rho^{m-k-1} \lambda_0 \left(t - T_{N_k - k} \right) + \sum_{k=N_t}^{m-1} \rho^{m-k-1} \lambda_0(t) \right)$$

• Then for $N_t \ge m$, we have

$$\lambda(t|\mathcal{H}_{t-}) = \frac{1}{m} \sum_{k=0}^{m-1} \rho^{m-k-1} \lambda_0 (t - T_{N_k - k})$$

$$\frac{t \in (T_{N_t-1}, T_{N_t}] \qquad t \in (T_{N_t}, T_{N_t+1}] \qquad t \in (T_{N_t+1}, T_{N_t+2}]}{\frac{1}{m} \lambda_0 (t - T_{N_t - m}) \qquad \longrightarrow \qquad \frac{1}{m} \rho^{m-1} \lambda_0 (t - T_{N_t}) \qquad \longrightarrow \qquad \frac{1}{m} \rho^{m-2} \lambda_0 (t - T_{N_t})}{\frac{1}{m} \rho^{\lambda_0} (t - T_{N_t - m+1}) \qquad \longrightarrow \qquad \frac{1}{m} \lambda_0 (t - T_{N_t - m+1}) \qquad \longrightarrow \qquad \frac{1}{m} \rho^{m-1} \lambda_0 (t - T_{N_t - m+1})}{\frac{1}{m} \rho^2 \lambda_0 (t - T_{N_t - m+2}) \qquad \longrightarrow \qquad \frac{1}{m} \rho \lambda_0 (t - T_{N_t - m+2}) \qquad \longrightarrow \qquad \frac{1}{m} \lambda_0 (t - T_{N_t - m+2})}{\frac{1}{m} \rho^{m-1} \lambda_0 (t - T_{N_t - m+2}) \qquad \longrightarrow \qquad \frac{1}{m} \rho^{m-3} \lambda_0 (t - T_{N_t - m+2})}$$

University of **Kent**

The exponential smoothing of intensity model

$$\lambda(t|\mathscr{H}_{t-}) = \begin{cases} \frac{1}{m} \sum_{k=0}^{m-1} \rho^{m-k-1} \lambda_0(t), & \text{if } N_t = 0, \\ \frac{1}{m} \left(\sum_{k=0}^{N_t - 1} \rho^{m-k-1} \lambda_0(t - T_{N_t - k}) + \sum_{k=N_t}^{m-1} \rho^{m-k-1} \lambda_0(t) \right), & \text{if } 1 \le N_t < m, \\ \frac{1}{m} \sum_{k=0}^{m-1} \rho^{m-k-1} \lambda_0(t - T_{N_t - k}), & \text{if } N_t \ge m. \end{cases}$$

• In this model, we have parameter ρ and parameters in $\lambda_0(t)$. $\lambda_0(t)$ may be the power law, for example,

$$\lambda_0(t) = \alpha \beta t^{\beta - 1}$$

on which the number of parameters in total is 3

Denote $G_k(t)$ as the probability distribution of time to the *k*-th failure, T_k , of the component with intensity function $\lambda_0(t)$.

Lemma 1 For a given m, if $\int_0^\infty \lambda_0(u) dG_k(u) < \infty$, then $E[\lambda(t|\mathscr{H}_{t-})] < \infty$ for $t \to \infty$.

Lemma 2 $\lambda(t|\mathscr{H}_{t-})$ may show monotonicity under some conditions, as shown below.

- If $\lambda_0(t)$ is an increasing function in t, then $\lambda(t|\mathscr{H}_{t-})$ is an increasing function for $t \in (T_{N_t}^+, T_{N_t+1}^-)$;
- If $\lambda_0(t)$ is a decreasing function in t, then $\lambda(t|\mathscr{H}_{t-})$ is a decreasing function for $t \in (T_{N_t}^+, T_{N_t+1}^-)$.

The moving average of intensity model

• If $\rho = 1$, then

$$\lambda(t|\mathscr{H}_{t-}) = \begin{cases} \lambda_0(t), & \text{if } N_t = 0, \\ \frac{1}{m} \left(\sum_{k=0}^{N_t - 1} \lambda_0(t - T_{N_t - k}) + (m - N_t)\lambda_0(t) \right), & \text{if } 1 \le N_t < m, \\ \frac{1}{m} \sum_{k=0}^{m-1} \lambda_0(t - T_{N_t - k}), & \text{if } N_t \ge m. \end{cases}$$

Lemma 3 • If $\lambda_0(t)$ is an increasing function in t, then $\lambda(t|\mathscr{H}_{t-}) \leq \lambda_0(t)$;

• If $\lambda_0(t)$ is an decreasing function in t, then $\lambda(t|\mathscr{H}_{t-}) \geq \lambda_0(t)$;

• If
$$\lambda_0(t) = \lambda_0$$
, where λ_0 is a constant, then $\lambda(t|\mathscr{H}_{t-}) = \lambda_0$.

Comparison

- RP (renewal process)
- NHPP-PL (non-homogeneous Poisson process with the power law)
- GP (geometric process)
- Kijima I (virtual age process I)
- Kijima II (virtual age process II)
- ARI_m (Arithmetic Reduction of Intensity model)
- ARA_m (Arithmetic Reduction of Age model)
- BBIP(Bounded Bathtub Intensity Process)
- Model II (Wu & Scarf, 2017)
- ESI (Exponential Smoothing of Intensity model)
- MAI (Moving Average of Intensity model)

Number of parameters and performance metrics

• The numbers of parameters

Table 2: The number of unknown parameters in each model.

	RP	NHPP-PL	GP	Kijima I	Kijima II	ARI_m	ARA_m	BBIP	Model II	ESI	MAI
q	2	2	3	3	3	3	3	4	4	3	2

Performance metrics

$$AIC = -2\log(L) + 2q,$$

$$AIC_c = -2\log(L) + 2q + \frac{2(q+2)(q+3)}{n-q-2},$$

 $BIC = -2\log(L) + q\log(n),$

n: the number of systems; m: the number of components in each system

		Estimated values of $(-\log(L))$											
		Nine existing models										New models	
		q = 2		q = 3				q = 4		q = 3	q = 2		
n	m	RP NHPP-PL		GP	Kijima I	Kijima II	ARI _m	ARAm	BBIP	Model II	ESI	MAI	
	E	45.33	42.40	43.08	41.65	41.17	40.82	41.20	42.18	40.60	40.82	41.00	
	9	(5.07)	(4.47)	(4.21)	(4.25)	(4.35)	(4.21)	(4.29)	(4.21)	(4.23)	(4.25)	(4.28)	
15	15	28.73	24.79	26.72	24.18	23.96	24.15	24.25	24.32	23.14	23.84	24.02	
10		(4.21)	(3.38)	(3.23)	(3.57)	(3.68)	(3.72)	(3.72)	(3.23)	(3.65)	(3.77)	(3.67)	
	25	23.16	19.35	21.62	18.32	18.33	18.36	18.31	18.96	17.53	18.01	18.24	
		(3.95)	(3.58)	(3.04)	(3.84)	(3.74)	(3.83)	(3.80)	(3.47)	(3.96)	(3.89)	(3.87)	
	5	91.80	86.67	88.15	86.02	85.46	85.30	85.51	86.34	85.09	85.22	85.33	
		(9.10)	(8.13)	(8.10)	(8.08)	(7.99)	(8.33)	(8.16)	(8.10)	(8.10)	(8.06)	(8.17)	
20	15	57.69	50.53	53.60	49.96	49.34	50.02	49.92	49.98	48.42	49.06	49.23	
30		(7.70)	(6.03)	(5.99)	(6.19)	(6.14)	(6.15)	(6.12)	(5.98)	(6.23)	(6.13)	(6.18)	
	25	45.03	36.95	41.76	36.46	35.97	36.26	36.26	36.52	35.22	35.67	35.84	
		(7.32)	(5.57)	(5.45)	(5.66)	(5.81)	(5.92)	(5.79)	(5.44)	(5.83)	(5.93)	(5.95)	
	5	136.12	127.52	130.17	126.61	125.76	125.60	125.71	127.20	125.15	125.41	125.56	
45		(13.97)	(11.82)	(12.19)	(11.69)	(11.63)	(11.75)	(11.66)	(11.84)	(11.31)	(11.68)	(11.62)	
	15	84.94	74.17	79.01	73.65	73.12	73.99	73.52	73.49	72.15	72.75	72.96	
40	10	(11.66)	(7.87)	(8.77)	(7.95)	(8.75)	(8.24)	(7.93)	(7.86)	(7.73)	(8.06)	(8.02)	
	25	64.92	52.24	59.85	51.72	51.31	51.69	51.62	51.68	50.57	51.09	51.30	
	20	(12.03)	(6.77)	(9.13)	(6.94)	(7.07)	(7.20)	(7.11)	(6.71)	(7.00)	(7.02)	(7.09)	

Table 3: The means and standard deviations of $(-\log(L))$ from 30 repetitions.

Real world cases

Table 4: The real-world datasets.

No.	Dataset	n	Data source	Model
1	Hydraulic system (LHD 1)	23	Kumar and Klefsjö (1992)	NHPP-PL
2	Hydraulic system (LHD 3)	25	Kumar and Klefsjö (1992)	NHPP-PL
3	Hydraulic system (LHD 9)	27	Kumar and Klefsjö (1992)	NHPP-PL
4	Hydraulic system (LHD 11)	28	Kumar and Klefsjö (1992)	NHPP-PL
5	Hydraulic system (LHD 17)	26	Kumar and Klefsjö (1992)	NHPP-PL
6	Hydraulic system (LHD 20)	23	Kumar and Klefsjö (1992)	NHPP-PL
7	Air conditioner (TBF 7909)	24	Proschan (1963)	HPP
8	Air conditioner (TBF 7912)	30	Proschan (1963)	HPP
9	Air conditioner (TBF 7913)	27	Proschan (1963)	HPP
10	Air conditioner (TBF 7914)	23	Proschan (1963)	HPP
11	Compressor	24	Yanez et al. (2002)	Kijima model I
12	Main propulsion motor	24	Yanez et al. (2002)	Kijima I
13	Powertrain System 510	55	Guida and Pulcini (2009)	BBIP
14	Powertrain System 514	35	Guida and Pulcini (2009)	BBIP
15^{*}	Diesel engine	56	Lee (1980)	NHPP-WLL

* In dataset 15, there is a value 0, which is replaced with 0.5 in this paper.

Model performance on the real-world datasets

Table 5: $-\log(L)$ of each model on the real-world datasets.

llu	Estimated value of $(-\log(L))$											
	Nine existing models										nodels	
	q = 2		q = 3				q = 4		q = 3	q = 2		
No.	RP NHPP		GP	Kijima I	Kijima II	ARI _m	ARA_m	BBIP	Model II	ESI	MAI	
1	129.99	128.50	129.50	128.46	128.50	128.44	128.46	129.09	128.02	128.32	129.38	
2	148.72	146.96	148.72	146.96	145.47	145.31	145.32	146.22	144.94	144.20	144.94	
3	166.55	163.64	165.39	163.52	163.65	163.48	163.49	164.36	163.96	163.45	163.97	
4	158.05	157.09	157.99	157.09	155.89	155.54	155.86	156.23	155.21	154.91	155.44	
5	151.20	149.33	150.96	149.32	149.12	148.38	148.36	149.81	148.98	148.87	149.14	
6	137.27	136.86	137.12	136.73	135.65	135.55	135.65	136.61	134.77	135.29	135.80	
7	125.37	126.30	124.48	125.37	125.37	125.05	125.37	125.96	125.37	125.37	125.37	
8	151.94	150.43	151.14	150.41	150.42	150.37	150.42	150.64	150.20	150.24	151.33	
9	143.96	144.22	143.10	143.96	143.10	141.19	142.75	143.81	141.80	142.07	142.15	
10	119.60	119.66	119.21	119.52	119.56	118.68	119.57	119.47	117.98	118.58	119.55	
11	191.06	189.30	190.95	189.32	188.90	188.70	187.82	189.22	188.78	188.12	188.85	
12	183.88	182.44	182.70	181.63	182.45	181.55	181.85	183.29	182.37	182.45	182.91	
13	543.26	543.57	543.19	542.28	541.88	543.32	543.58	542.52	542.35	542.35	542.87	
14	356.18	357.05	356.06	355.88	355.07	354.55	357.06	353.77	354.74	353.98	355.04	
15	369.29	368.31	369.14	368.31	368.00	367.06	367.68	367.70	367.89	367.75	368.07	
$-\log(L)^*$	205.09	204.24	204.64	203.92	203.53	203.14	203.55	203.91	203.16	203.06	203.65	
AIC*	414.17	412.48	415.29	413.83	413.07	412.29	413.10	415.83	414.32	412.13	411.31	
AIC _c *	415.20	413.50	417.07	415.62	414.85	414.08	414.88	418.64	417.13	413.91	412.33	
BIC*	416.89	415.19	419.36	417.90	417.14	416.36	417.16	421.25	419.74	416.20	414.02	

^{*} The value with ^{*} on its right upper corner represents the mean of the value.

University of Kent

Results

Table 6: Results of the performance comparison from Table 5.

		ESI	MAI			
No.	$-\log(L)$	$-\log(L)$ of the " $q = 3$ " models	AIC	$AIC_c \& BIC$		
1	Model II	ESI	NHPP-PL	NHPP-PL		
2	ESI	ESI	MAI	MAI		
3	ESI	ESI	NHPP-PL	NHPP-PL		
4	ESI	ESI	MAI	MAI		
5	ARA_m	ARA_m	MAI	MAI		
6	Model II	ESI	MAI	MAI		
7	GP	GP	MAI	MAI		
8	Model II	ESI	NHPP-PL	NHPP-PL		
9	ARI_m	ARI_m	MAI	MAI		
10	Model II	ESI	MAI	MAI		
11	ARA_m	ARA_m	MAI	MAI		
12	ARI_m	ARI_m	NHPP-PL	NHPP-PL		
13	Kijima II	Kijima II	MAI	MAI		
14	BBIP	ESI	ESI	MAI		
15	ARIm	ARI_m	MAI	MAI		
Frequency	$4 \times Model II$	8×ESI	10×MAI	11×MAI		

Thank you.

Questions?