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= Consider a series system composed of three components

—I N

= Assumptions
— Once a component fails, it is immediately replaced with an identical one,
— The failure mode is not recorded /unknown

= The failure process of the system is a super-imposed renewal process (SRP).
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= The GP has been extensively studied since its introduction in 1988, mainly due to its
elegance and convenience in deriving mathematical properties in applications

[ Failure process models ]
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= Limitations of the practical application of SRP (super-imposed renewal
process):

— In reality, the number of failures of a system is limited
— Too many parameters in the SRP
=>uncertainty of the parameters in a model becomes large

= A limitation in the existing models: Only considering the same effectiveness of
maintenance upon failures in the lifecycle of a system

— Replacing different components causes different effectiveness of maintenance

= A possible solution
— Constraint: unknown failure modes + limited number of failures
— Solution: use the Exponential Smoothing methods in failure intensity function
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= Assume we are interested in a time series xq, X, ..., X,,
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= Assume we are interested in a time series xq, X, ..., X,,

= Model 1: Simple exponential smoothing method
Xn+1= axn + (1 — a)xy
— where: X,, is the last period’s forecast; x,, is the last periods actual value; and 0 < a < 1

— We modify the simple exponential smolothing method and think of the following method
p—

1 .
5 — 5 i
n+1 = 5 " Xn—i

=0
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Two forecasting models Ken

= Assume we are interested in a time series xq, X, ..., X,,

= Model 1: Simple exponential smoothing method
Xn+1= axn + (1 — a)xy
— where: X,, is the last period’s forecast; x,, is the last periods actual value; and 0 < a < 1

— We modify the simple exponential smolothing method and think of the following method
p—
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= Understanding the time series from a failure process perspective

> X, is the time to the nth failure, i.e,, it is the time to the latest failure, i.e., “youngest
failure” ..., x,,_p, 11 is the time to the (n — p + 1)th failure, i.e.,, “older failure”

> a'x,_; implies that more weight on the oldest failure
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= Model 1: Simple exponential smoothilng method
o

1 .
5 _ E i
Xn+1 = 5 A Xn—i

i=0
= Model 2: Moving average method. Let &« = 1, then we obtain the moving average

model
p—1
>
i=0

Xn+1 =

=S| =
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= Model 1: Simple exponential smoothilng method
o

1 .
5 _ E i
Xn+1 = E A Xn—i

i=0
= Model 2: Moving average method. Let &« = 1, then we obtain the moving average

model
p—1
>
i=0

— The exponential smoothing of intensity model (ESI)

Xn+1 =

=S| =

= We consider two models

— The simply moving average of intensity model (SMI)
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= Consider a series system composed of three components

- B
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= Consider a series system composed of three components

- B

— At the 1st failure, we assume one of the components, component 1
say, fails;
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= Consider a series system composed of three components

- B

— At the 2™ fajlure, we assume another component, component 2 say,
fails
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= Consider a series system composed of three components

- B

— At the 3" failure, we assume component 3 fails
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= Consider a series system composed of three components

- B

— At the 4% failure, we assume component 1 fails, ...

——VC1—VC2 —VC3—VC1 —VC2—VC3—
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= Assume a real-world system is composed of m components. The reliability of each
component is unknown.

= We approximate the failure process of the above system with that of the following
virtual system.

= Assume a system composed of m components with failure rate functions
%pm_l/lo (t), %pm_z/lo (), ..., %/10 (t), respectively. That is, before the 15t failure of the

system, the failure intensity function of the system is assumed to be

1 m-—1
MEIH) == ) pm R A (0)
k=0
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= Then for 1 < N; < m, we have

1 Nt—l m-—1
M) = | D R (E = Tyi) + ) PR g(®)
k=0 k=Nt

t € (0,73] t € (11, T3] t € (T, T3] t € (T3, T)]
i/\[}(t) — iﬁm_l)in(f — Tl) — ipfrt_?‘}.n(t — Tl) — ipm_g/\[}(t — Tl)
ﬁ?/\n(t) — = o(t) — PNt =T) — p" T N(E - T)
307 R et S G O

iplm_l/\ﬂ(t) — ipm—i }‘ﬂ (t) — ip'm—ﬁ)\n (f) — ipm,—-i)in (f)
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= Then for 1 < N; < m, we have

1 Nt—l m-—1
A(t134,) = a(i P g (£ = Tw) + Y pm-k-uoa))

k=0 k=Nt

= Then for N; = m, we have
1 m-—1
M) = = ) PR g (£ = Tyyoi)
k=0

S (j_:"\rg—l:-Tﬁ"t] t e (j_:'"\-"t;Tf'h"t—{—l] t € (T_:V¢+l;j_}'l."t+2]

%/‘\n(t _ r:":ﬁf"'-"t—'ﬂ’l) me_l/\ﬂ' (t - TNt) l.-om_g}‘ﬂ(t — Tth)

ip}"ﬂ'(t _ TNt—'m-l-l) L}‘ﬂ (t _ T:Vz—m-i-l) ,}Epm_l}‘ﬂ (t — T:-"'l.";—l—l)
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. '.In.—."::—l’:-IL t— T if N, >
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s
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= In this model, we have parameter p and parameters in 1,(t). 1,(t) may be the power
law, for example,

Ao(t) = aptF1
on which the number of parameters in total is 3
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Denote G, (t) as the probability distribution of time to the k-th failure, T}, of the
component with intensity function A, (t).

Lemma 1 For a given m, if [ Ao(u)dG(u) < oo, then E[A(t]|.7-)] < oo fort — oco.

Lemma 2 A(t|.7_) may show monotonicity under some conditions, as shown below.

e If Xo(t) is an increasing function int, then A(t|.76_) is an increasing function fort € (T3, Ty .1);

o If Ao(t) is a decreasing function int, then A(t|.7#_) is a decreasing function fort € (T, Ty . ).



University of

The moving average of intensity model Kent

= [fp =1, then

)‘I.'Dll:t)- if J:!\‘.'t — n:‘

1 Ni—1

— Aot =T — N t) |, if 1 < N,
At A) =4 m ; ot = T—k) + (m — Ne)A (}). if 1 <N, <m.

1 m—1

- Z /“ﬂ(? - :I-:"'u"z—k}'. lf _._'\.rt :_::!- 177.

m

\ k=0

Lemma 3 o If \y(t) is an increasing function in t, then A(t|.74_) < Ao(t);
o If M\y(t) is an decreasing function in t, then A(t|.7_) = Ay(t):

o If \o(t) = Ao, where Ag is a constant, then A(t|.74_) = Ag
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= RP (renewal process)

= NHPP-PL (non-homogeneous Poisson process with the power law)
= GP (geometric process)

= Kijima I (virtual age process I)

= Kijima II (virtual age process II)

= ARI,,, (Arithmetic Reduction of Intensity model)
= ARA,,, (Arithmetic Reduction of Age model)

= BBIP(Bounded Bathtub Intensity Process)

= Model Il (Wu & Scarf, 2017)

= ESI (Exponential Smoothing of Intensity model)
= MAI (Moving Average of Intensity model)
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= The numbers of parameters

Table 2: The number of unknown parameters in each model.

RP NHPP-PL GP Kijimal KijimaIl ARI, ARA, BBIP Model II ESI MAI
q| 2 2 3 3 3 3 3 1 1 3 2

= Performance metrics

AIC = =2log(L) + 24,

2(q +2)(q + 3)

AIC, = —2log(L) + 2
c og(L) + 2q + p———

BIC = —2log(L) + qlog(n),



n: the number of systems; m: the number of components in each system

Table 3: The means and standard deviations of (—log(L)) from 30 repetitions.
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Estimated values of (—log(L))

Nine existing models

New models

1

q=2 I qg=23 | g=4 L g=23 q=2

n |m| RP NHPP-PL,; GP Kijimal Kijimall ARI, ARA, | BBIP ModelIl] ESI MAT
- 533 4240 | 43.08 11.65 41.17 4082  41.20 | 42.1R 10.60 T 40.82 ' 41.00

- (5.07) (4.47) 1 (4.21) (4.2 (4.35) (4.21) (429) ! (4.21) (4.23) 1 (4.25) (4.28)

vl [ BT 2079 1 26.72 21.18 23.06 2015 2425 | 2432 2314 1 2381 24,02
ST a21) (3.38) 1 (3.23) (3.57) (3.68) (3.72) (3.72) 1 (3.23) (3.65) . (3.77) [(3.67)
or | 2316 19.35 | 21.62 18.32 18.33 18.36 18.31 | 18.06 17.63 | 18.01  18.24

| (3.95) (3.58) | (3.04) (3.84) (3.74) (3.83) (3.80) | (3.47) (3.96) ! (3.89) (3.87)

- [ 91.80 86.67 ' 88.15 86.02 85.46 8530 8551 ! S6.31 85.09 178522 [85.33

Y| (9.10) (8.13) 1 (3.10) (8.08) (7.99) (8.33) (8.16) ' (8.10) (8.10) 1 (8.06) (8.17)

20 | 15 | 5769 50.53 : 53.60 19.96 19.34 50.02 49.92 : 19.08 1842 | 49.06 49.23
) S (7.70) (6.03)  (5.99)  (6.19) (6.14) (6.15) (6.12) |, (5.98)  (6.23) | (6.13) (6.18)
o5 15.03 36.95 1 41.76 36.46 35.07 36.26 36.26 | 306.52 35.22 | 3b.67 |30.84

T (7.32) (5.57) ! (5.45)  (5.66) (5.81) (592) (5.79) ! (5.44) (5.83) ! (5.93) (5.95)

- [ 136127 12752 113007 12661 12576 12560 12571 1 12720 125.15 112541 125.56
©{(13.97)  (11.82) (12.19) (11.69) (11.63) (11.75) (11.66)  (11.84) (11.31)  (11.68) (11.62)
s [ 349 7417 | 79.01 73.65 73.12 73.99 73.52 | 73.49 7215 | T2.15 | 72.96
17 (1vee)  (7.87) ) (8.77) (7.95) (8.75) (8.24) (7.93) ! (7.86) (7.73) ! (8.06) (8.02)
o5 [ 6492 5224 1 50.85 51.72 51.31 5169 5162 | 51.63 50.57 175109 5130
“1(1203)  (6.77) v (9.13)  (6.94) (7.07) (7.20) (7.11) ' (6.71)  (7.00) 1 (7.02) (7.09)
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Table 4: The real-world datasets.

No. Dataset n Data source Model

1 Hydraulic system (LHD 1) | 23 | Kumar and Klefsjo (1992) NHPP-PL
2 | Hydraulic system (LHD 3) | 25 | Kumar and Klefsjo (1992) NHPP-PL
3 | Hydraulic system (LHD 9) | 27 | Kumar and Klefsj6 (1992) NHPP-PL
4 | Hydraulic system (LHD 11) | 28 | Kumar and Klefsjo (1992) NHPP-PL
5 | Hydraulic system (LHD 17) | 26 | Kumar and Klefsjo (1992) NHPP-PL
6 | Hydraulic system (LHD 20) | 23 | Kumar and Klefsjo (1992) NHPP-PL
7 | Air conditioner (TBF 7909) | 24 Proschan (1963) HPP

& | Air conditioner (TBF 7912) | 30 Proschan (1963) HPP

9 | Air conditioner (TBF 7913) | 27 Proschan (1963) HPP

10 | Air conditioner (TBF 7914) | 23 Proschan (1963) HPP

11 Compressor 24 Yanez et al. (2002) Kijima model 1
12 Main propulsion motor 24 Yanez et al. (2002) Kijima I
13 Powertrain System 510 55 | Guida and Puleini (2009) BBIFP

14 Powertrain System 514 35 | Guida and Puleini (2009) BBIFP
15% Diesel engine 56 Lee (1980) NHPP-WLL

" In dataset 15,

there 1s a value (),

which is replaced with 0.5

in this paper.
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5: —log(L) of each model on the real-world datasets.

Estimated value of (—log(L))

Nine existing models

New models

|
qg=2 1 qg=1 | =4 L g=31 g=2
No. RFP NHPP ;, GP Kijmal Kijimall ARI, ARA, | BBIP ModelII | ESI | MAI
1 12999 128,50 ; 129050 128.46 128.50 12844 128.46 | 129.09 128.02 I128.32 ; 120,38
2 148.72  146.96 | 148.72  146.96 145.47 145.31 14532 | 146.22 144.94 1 144,20 | 144.94
3 16605  164.64 ! 160.49  164.02 163,65 163458  163.49 | 164.36  164.96 1 163.45 1163.97
4 158.05 157.09 ' 15799 15704 155.89 155.04 15586 ' 156.23  155.21 | 154.91 1 155.44
2 151.20 149.33 1 150.96  149.32 149.12 1458.35 148.36 1 149.81  145.98 : 148.87 1 149.14
6 137.27  136.86 4 137,12 136.73 135.65 135.55 135.65  136.61  134.77 ! 135.29 1 135,80
T 12537 126.30 ; 12448  125.37 125.37 125.05 125.37 | 125.96 125.37 ' 125.37 y 125.37
8 151.94 150.43 [ 151.14  150.41 150.42 150.37 150.42 | 150.64  150.20 1 150).24 ;151,33
9 14396 144.22 1 143.10  143.96 143.10 141.10 142,75 | 143.81  141.80 | 142.07 | 142.15
1) 119.60 119.66 ; 119.21  119.52 119.56 118.68 119.57 | 119.47  117.98 | 118.58 ' 119.55
11 191.06  189.30 ' 190.95  180.32 158.90 188.70 187.82 ' 189.22 158.78 : 188.12 1 158.85
12 1835858 18244 10 18270  151.6G3 182,45 181,55 181.55 1 183.29 18237 ! 182,451 182.91
143 54326 543.57 y 543.19  542.28 541.88 543.32 543.58 | 54252 542.35 1 542.35 1 54287
14 356.18 3537.05 , 356.06  335.88 355.07 35455 357.06 | 353,77 354.74 1 333.98 ; 355.04
15 360.20 36831 | 369.14  368.31 368.00 367.06 367T.68 | 367.70  36T.89 | 367.75 , 368.07
—log(L)* | 205.09 204.24 1 204.64  203.92 203.53  203.14  203.55 | 203.91  203.16 | 203,06 ' 203.65
AIC* 414.17 41248 1 415.29  413.83 413.07 41229 413.10 | 415.83 41432 | 412.13 ' 411.31
AIC* 415.20 413.50 v 417.07  415.62 414.85  414.08 414.85 ' 418.64  417.13 1 413.91 1 412,33
BIC* 41689 41519 1 41936 417.90 417.14  416.36  417.16 1 421,25 419.74 0 416.20 1 414.02

=
The value

with * on its right upper corner represents the mean of the value.
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Table 6: Results of the performance comparison from Table 5.

ESI MAI .

No. —log(L) 1 —log(L) of the "g = 3" models AlIC 1 AIC. & BIC
1 Model 1T ESI NHPP-PL , NHPP-PL
2 ESI : ESI MAT | MAI

3 ESI ! ESI NHPP-PL ! NHPP-PL
4 ESI ! ESI MAL MAI

5 ARA, ARA, MAI MAI

6 Model 1T ESI MAI | MAI

7 GP : GP MAI MAI

8 Model IT | ESI NHPP-PL | NHPP-PL
9 ARI, ! ARIL, MAT 1 MAI

10 Model IT ESI MAI MAI

11 ARA,, | ARA,, MAT | MAI

12 ARL, | ARIL, NHPP-PL | NHPP-PL
13 Kijima IT | Kijima 11 MAIL | MAI

14 BBIP ! ESI ESI ! MAI

15 ARI, ARIL, MAT MAI

Frequency | 4xModel 1T &x ESI 10xMAT =~ 11xMAI
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Thank you.

Questions?
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