November 29 2018 3rd Workshop on Railway Operation for Safety and Reliability at CityU

How to Plan and Manage Timetables with Skip-stop Operation More Efficiently

Norio TOMII Professor

Chiba Institute of Technology, Japan

Skip stop operation with coupling of rapid and regular trains work very well.

What we have to be careful about for skip stop operation?

New timetabling procedure considering running speed of trains.

Who am I?

- Japan National Railways
 - Timetabling, Train Traffic Control System
- Railway Technical Research Institute
 - Scheduling Algorithms of Railway Operation
- Professor of Chiba Institute of Technology
 - Department of Computer Science
- Japan Transport Safety Board, ex-member
 President of IAROR (International Association of Railway Operations Research)

Contents

- 1. What is a skip-stop operation?
 - **1-1 Background**
 - 1-2 Why skip-stop operation?
- **2.** Considerations for skip-stop operation
- 3. New timetabling procedure considering running speed of trains
- 4. Results of applications

Railway companies

- Seven JR companies
- Many private railway companies

- They own infrastructure and operate trains
 - They do not receive subsidies
 - They have to spare investment
 Not so many tracks, switches,...

Regular train: stops at all the stations

Regular trains only!

2018/12/3 All Rights Reserved, Norio TOMII, Chiba Institute of Technology

9

Too much time!

There exist a lot of stations.If a train stops at all the stations?

Railway	From	То	distance
Keikyu	Shinagawa	Yokohama	0.93 km
Tokyu	Shibuya	Yokohama	1.21 km
Odakyu	Shinjuku	Mukogaoka	0.88 km
Keio	Shinjuku	Chofu	0.91 km
Seibu	Takadanobaba	Kamishakujii	0.98 km

Regular train: stops at all the stations

Rapid train: skips some stations

Why skip-stop operation?

Туре	Journey Time	Stops
Regular	58 min.	25
Rapid	50 min.	17
Special	4 1 min.	8

Less frequent?

2018/12/3 All Rights Reserved, Norio TOMII, Chiba Institute of Technology

Overtaking : more frequent

2018/12/3 All Rights Reserved, Norio TOMII, Chiba Institute of Technology

Transfer on the same platform

Coupling of rapid train and regular train

Regular train is coming.

Coupling of rapid train and regular train

Rapid train is coming.

Passengers can transfer mutually on the same platform. 2018/12/3

Coupling

81min. : by Regular
47min. : by Rapid+Regular

Contents

- 1. What is a skip-stop operation?
 - 1-1 Background
 - 1-2 Why skip-stop operation?
- 2. Considerations for skip-stop operation
- 3. New timetabling procedure considering running speed of trains
- 4. Results of applications

When we operate skip-stop operation, we have to be careful for

Congestion

We have to be careful for

Congestion of rapid trains

Dwell times of rapid train increase because a lot of passengers get on/off.

Delay occurs!

We have to be careful for

Congestion of Rapid trains

Solutions 1. Longer train-set for rapid trains Complicated...

Longer train-set for rapid trains?

If rapid trains are longer?

We have to be careful for

Congestion of Rapid trains

Solutions

- 1. Longer train-set for rapid trains
- 2. For certain areas, rapid trains stop at all stations and do not overtake rapid trains

Coupling of rapid train and regular train

2018/12/3 All Rights Reserved, Norio TOMII, Chiba Institute of Technology

Rapid train does not overtake

2018/12/3 All Rights Reserved, Norio TOMII, Chiba Institute of Technology

When we operate skip-stop operation, we have to be careful for

Capacity

Regular trains only!

2018/12/3 All Rights Reserved, Norio TOMII, Chiba Institute of Technology

28

Overtaking

2018/12/3 All Rights Reserved, Norio TOMII, Chiba Institute of Technology

We have to be careful for

Enough capacity during morning rush hours?

Solution

1. Decrease running speed of rapid trains

Rapid trains run slowly

Rapid trains run slowly

What we have to be careful about?

Rapid trains have too much running time supplement! Drivers have too much freedom in driving!

Too much running time supplement – too much freedom

Contents

- 1. What is a skip-stop operation?
 - 1-1 Some examples
 - 1-2 Why skip-stop operation?
- 2. Considerations for skip-stop operation
- 3. New timetabling procedure considering running speed of trains
- 4. Results of applications

Rapid trains have to run "properly"Otherwise Delay !

What we should do to let rapid trains run "properly"

Our Ideas

Our idea

- specify departure / arrival times + running speed of trains in a timetable.
- Brand new approach for timetabling !
- Conventionally,
 - Only departure times and arrival times are specified in a timetable

Speed information is shown to driver

Planning phase! -> Static Not a DAS!

- 1. How we can specify the running speed?
- 2. How we can calculate the appropriate running speed?
- 3. How we can let the drivers know the running speed?
- 4. Drivers can really follow the specified running speed?
- 5. What we should do in case of (somewhat) large delays?

- 1. How we can specify the running speed?
 - Divide the track between main stations into several sections.
 - Define the speed limits for each section

	Section	Speed limits
Sta.1 –	Section A	No Limit
Sta.5	Section B	XX km/h
	Section C	XX km/h

2. How we can calculate the appropriate running speed?

microscopic simulation iterate simulation & check

2018/12/3 All Rights Reserved, Norio TOMII, Chiba Institute of Technology

42

Algorithm of new approach

Algorithm of new approach

3. How we can let the drivers know the running speed?

We list the information on Drivers' timetable cards!

4. Drivers can really follow the specified running speed?

- 5. What we should do in case of (somewhat) large delays?
 - cancel the speed limit in order to recover the delay.
 - dispatcher of OCC makes a decision and gives an order.

Simulation results

Contents

- 1. What is a skip-stop operation?
 - **1-1 Background**
 - 1-2 Why skip-stop operation?
- **2.** Considerations for skip-stop operation
- 3. New timetabling procedure considering running speed of trains
- 4. Results of applications

Results of Applications

We have applied this procedure when we revised timetable in March 2018.

We confirmed rapid trains run very smoothly. They rarely stop between stations.

Our proposed procedure was very successful!

Conclusions

- A new approach to make a robust timetable for dense traffic line.
 - Not only departure and arrival times but we specify running speed of trains in a timetable.
- By this approach,
 - Rapid trains can run at an appropriate speed. All trains are able to run smoothly and keep on time.
 - Energy consumption is reduced
- Applied for the real timetable revision
 - Our approach was very successful!

If you are interested,

Yasufumi Ochiai, Norio Tomii : A novel timetabling procedure which considers running speed of trains and its application to actual cases, to be submitted to RailNorkkoping, June 2019, Norkkoping, Sweden.

Thank you for your attention!

tomii@cs.it-chiba.ac.jp