Notice that $s_e(t)$ in (42) is unimplemented in practical application due to the fact that $s_e(t)$ contains the unmeasurable states $x(t)$. However, by introducing an equality constraint $B^TX = NC$ (as in [32], the switching function $s_e(t)$ can be transformed to $s_x(t)$ (which is directly available)), thus $s_e(t)$ can be implemented. By this, a constraint $B^TX = NC$ should be added in Theorem 4 behind (47). In fact, it is not difficult to find such a matrix N in $B^TX = NC$. Thus, the result in Theorem 4 is not affected.

Acknowledgement

The authors would like to thank Prof Y. Niu’s comment and helpful discussion to improve the current work.