Analyzing Diffraction Gratings by Neumann-to-Dirichlet Maps and Boundary Integral Equations

Yumao WU

Joint Advanced Research Center of USTC and CityU, P. R. China
Department of Mathematics
University of Science and Technology of China, P. R. China
Department of Mathematics
City University of Hong Kong, Hong Kong
Email: ymwu@mail.ustc.edu.cn

Diffraction gratings [1] are important in many practical applications. Numerical methods are essential in the design, analysis and optimization of grating structures. Existing numerical methods include the finite element method (FEM) [2], the Fourier modal method (FMM) [3, 4], the boundary integral equation (BIE) method [5, 6], etc. The FEM is very general, but it gives rise to large, complex and indefinite linear systems that can be difficult to solve. The FMM is suitable if the grating is a layered structure, but it is not so efficient when a general grating structure with sloping interfaces must be approximated by a layered one. The BIE method is suitable if the grating structure involves a small number of interfaces and the refractive index is piecewise constant, but it is somewhat complicated to implement, since the integral operators are related to the quasi-periodic Green’s function which requires lattice sums to evaluate. Recently, Huang and Lu [7] developed a Dirichlet-to-Neumann (DtN) map method for scattering of periodic arrays of cylinders. Existing numerical methods for diffraction gratings are applicable to the problem studied in [7], but special methods taking advantage of the geometry features, such as the multipole method [8] and the DtN-map method, are often more efficient. Unlike the multipole method, the DtN-map method [7] does not require lattice sums.

In this paper, we extend the DtN-map method to general diffraction grating problems. For 2D cases where the structure and the fields do not depend on z, the governing equation is

\[q\partial_z(q^{-1}\partial_z u) + q\partial_y(q^{-1}\partial_y u) + k_0^2 n^2 u = 0, \tag{1} \]

where \(k_0 \) is the free space wavenumber, \(q = 1 \) or \(q = n^2 \) for the TE or TM polarization, respectively. For a plane incident wave, and if the refractive index profile \(n(x, y) \) is periodic in \(x \) with period \(L \) and is constant for \(y < 0 \) and \(y > D \), then the problem can be reduced to a rectangle \(G \) given by \(0 < x < L \) and \(0 < y < D \), with a quasi-periodic condition in the \(x \) direction and some boundary conditions at \(y = 0 \) and \(y = D \) [1].

We divide \(G \) into sub-domains \(\Omega_1, \Omega_2, \ldots, \Omega_m \), where \(\Omega_j \) is bounded by two curves \(\Gamma_{j-1} \) and \(\Gamma_j \), and two vertical lines at \(x = 0 \) and \(x = L \). On \(\Gamma_j \), we let \(\nu \) be the outward unit normal vector of \(\Omega_j \). The DtN-map method solves the diffraction grating problem by manipulating two operators from \(\Gamma_0 \) to \(\Gamma_m \). On \(\Gamma_j \), we define the global DtN operator \(Q_j \) and fundamental solution operator \(Y_j \) by

\[Q_j u|_{\Gamma_j} = q^{-1}\partial_y u|_{\Gamma_j}, \quad Y_j u|_{\Gamma_j} = u|_{\Gamma_j}, \tag{2} \]

where \(u \) is any solution of Eq. (1) satisfying the quasi-periodic condition and the boundary condition at \(y = 0 \). On \(\Gamma_0 \), we know \(Q_0 \) from the boundary condition and \(Y_0 = I \). If \(Q_m \) and \(Y_m \) are obtained, we can find the reflected and transmitted waves as in [7]. The key step is to march these two operators from \(\Gamma_{j-1} \) to \(\Gamma_j \). This requires the NtD map \(\Lambda \) of the sub-domain \(\Omega_j \) and the quasi-periodic condition. In \(\Omega_j \), the refractive index \(n \) is a constant. Using the fundamental solution of the Helmholtz equation \(G(x, y) = \frac{1}{4} H_0^{(1)}(k_0 n|x - y|) \), we define the integral operators \(S \) and \(K \) as

\[(S\phi)(x) := 2 \int_{\partial\Omega_j} G(x, y)\phi(y)ds(y), \quad (K\phi)(x) := 2 \int_{\partial\Omega_j} \frac{\partial G(x, y)}{\partial\nu(y)}\phi(y)ds(y), \quad x \in \partial\Omega_j, \tag{3} \]

where \(\phi \) is an arbitrary function defined on \(\partial\Omega_j \). Then, on the boundary of \(\Omega_j \), we have \((1 + K)u = S\partial_{\nu} u\). Therefore, the NtD map of \(\Omega_j \) is \(\Lambda = (1 + K)^{-1}S \). In practice, \(\Lambda \) is approximated by a matrix. We discretize the integral equation by a Nyström method using a graded mesh.

For an example, we consider the structure shown in Fig. 1(a). The refractive indices of the top, the thin film and the substrate are \(n_0 = 1 \), \(n = 2.25 \) and \(n_s = 1.46 \), respectively. The parameters in Fig. 1(a) are \(d = 2L \) and \(\Delta d = 0.4L \). The reflectance of the zeroth order mode is shown in Fig. 1(b) as a function of the scaled wavelength \(\lambda_0 = 1.2\pi/(k_0 L) \), where \(L = 0.6\lambda_0 \). Our results agree well with those in [9].

1 Research supervised by Prof. Ya Yan Lu, City University of Hong Kong.
Figure 1: (a): a grating structure with a thin film; (b): Reflectance of zeroth order mode as a function of the scaled wavelength.

References