An interesting topic in compressive sensing concerns problems of sensing and recovering signals with sparse representations in a dictionary. In this note, we study conditions of sensing matrices A for the ℓ^1-synthesis method to accurately recover sparse, or nearly sparse signals in a given dictionary D. In particular, we propose a dictionary based null space property (D-NSP) which, to the best of our knowledge, is the first sufficient and necessary condition for the success of the ℓ^1 recovery. This new property is then utilized to detect some of those dictionaries whose sparse families cannot be compressed universally. Moreover, when the dictionary is full spark, we show that AD being NSP, which is well-known to be only sufficient for stable recovery via ℓ^1-synthesis method, is indeed necessary as well. This is a joint work with Haichao Wang and Rongrong Wang.