Mathematical Assessment of PWM Control of A Induction Motor

> Z. A. Aziz, C. S. Bohun, K. W. Chung, H. H. Dai, Y. H. Hao, D. Ho, H. X. Huang, F. F. Wang, J. Wang, Y. B. Wang

> > December 11, 2009

Mathematical assessment of PWM control of a induction motor

<ロ> <同> <同> < 同> < 三> < 三> <

Outline

Motivations Simple single coil AC motor model Three Phase Induction Motor Model and Simulation Sensorless control

2 Simple single coil AC motor model

3 Three Phase Induction Motor Model and Simulation

Motivations

This project aims to develop PWM based schemes to control single phase AC induction to operate at different rotational speed with optimized motor performance in terms of:

- High torque output, particularly during start-up;
- High energy efficiency;
- Shortest spin-up time.

イロン イボン イヨン イヨン

Basic scheme of field orientated control for 3-phase AC-motors

Simple single coil AC motor model

$$\mathcal{C}_a(t) = L_a \, \dot{i}_a'(t) + R_a \, \dot{i}_a(t) + \mathcal{C}_b(t), \quad (1)$$

$$J \omega'(t) = \tau_m(t) - \tau_L, \qquad (2)$$

$$\boldsymbol{\ell}_{b}(t) = K_{b} \,\,\boldsymbol{\omega}(t), \tag{3}$$

$$\tau_m(t) = K_i \, \dot{i}_a(t). \tag{4}$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Mathematical assessment of PWM control of a induction motor

E

Governing equation and general solution

From (1)-(4) and by eliminating $\omega(t)$, $e_b(t)$ and $\tau_m(t)$, we obtain

$$i_{a}^{\prime\prime}(t) + \frac{R_{a}}{L_{a}}i_{a}^{\prime}(t) + \frac{K_{i}K_{b}}{L_{a}J}i_{a}(t) = \frac{e_{a}^{\prime}(t)}{L_{a}} - \frac{K_{b}\tau_{L}}{L_{a}J} = f(t), \qquad (5)$$

The general solution of equation (5) is

$$i_{a}(t) = C_{1}e^{\lambda_{1}t} + C_{2}e^{\lambda_{2}t} + \frac{e^{\lambda_{2}t}}{\lambda_{2} - \lambda_{1}} \int_{0}^{t} e^{-\lambda_{2}s} f(s)ds - \frac{e^{\lambda_{1}t}}{\lambda_{2} - \lambda_{1}} \int_{0}^{t} e^{-\lambda_{1}s} f(s)ds.$$
(6)

At time t = 0, we have

$$i_a(0) = 0, \quad i'_a(0) = C_1\lambda_1 + C_2\lambda_2.$$
 (7)

Control objectives

• Find the optimized voltage input $e^o_a(t)$, s.t.,

$$\int_0^T (i_a^o(t) - \bar{i}_a)^2 dt = \min_{e_a(t)} \int_0^T (i_a(t) - \bar{i}_a)^2 dt.$$
(8)

The following constraint condition is satisfied

$$\int_0^T e_a(t)i_a(t)dt \le \alpha_0.$$
(9)

イロン イボン イヨン イヨン

We consider the Fourier series expansion form of $e_a(t)$:

$$e_a(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\frac{2\pi n}{t_p}t) + b_n \sin(\frac{2\pi n}{t_p}t)].$$
 (10)

Simulation results (1)

Fig 2. Simulation results with $R_a = 0.1\Omega$, $L_a = 10^{-4}$ H, $J = 9 \times 10^{-5}$ Kg ·m², $K_i = K_b = 0.02$, $\tau_L = 0.3$ N·m.

Simulation results (2)

 $J = 0.088 \text{ Kg} \cdot \text{m}^2$, $K_i = K_b = 0.628$, $\tau_L = 3 \text{ N} \cdot \text{m}_2$, $\tau_R = 0.038 \text{ Kg} \cdot \text{m}^2$

- **(**) Current of stator and rotor in d- and q-coordinate: i_{dS} , i_{qS} , i_{dR} , i_{qR} ;
- Flux-linkage of stator and rotor in d- and q-coordinate: λ_{dS}, λ_{qS}, λ_{dR}, λ_{qR};
- 3 Resistance of stator and rotor: r_S , r_R ;
- **O** Self-inductance of stator and rotor: L_S , L_R ;
- **(3)** Magnetizing inductance: M.

3

イロン 不同 とくほう イヨン

Flux-current relationships are

$$\begin{bmatrix} \lambda_{dS} \\ \lambda_{dR} \end{bmatrix} = \begin{bmatrix} L_S & M \\ M & L_R \end{bmatrix} \begin{bmatrix} i_{dS} \\ i_{dR} \end{bmatrix}$$
$$\begin{bmatrix} \lambda_{qS} \\ \lambda_{qR} \end{bmatrix} = \begin{bmatrix} L_S & M \\ M & L_R \end{bmatrix} \begin{bmatrix} i_{qS} \\ i_{qR} \end{bmatrix}$$

The voltage equations are

$$\begin{cases} v_{dS} = \frac{d\lambda_{dS}}{dt} - \omega\lambda_{qS} + r_{S}i_{dS}, \\ v_{qS} = \frac{d\lambda_{qS}}{dt} + \omega\lambda_{dS} + r_{S}i_{qS}, \\ 0 = \frac{d\lambda_{dR}}{dt} - \omega_{s}\lambda_{qR} + r_{R}i_{dR}, \\ 0 = \frac{d\lambda_{qR}}{dt} + \omega_{s}\lambda_{dR} + r_{R}i_{qR}. \end{cases}$$

The balance of the torques is

$$T^e = J \frac{d\omega_m}{dt} + T_L,$$

$$T^e = \frac{3}{2}p(\lambda_{dS}i_{qS} - \lambda_{qS}i_{dS}),$$

$$\omega_s = \omega - p\omega_m.$$

$$y_1 = \lambda_{dS}, \quad y_2 = \lambda_{dR}, \quad y_3 = \lambda_{qS}, \quad y_4 = \lambda_{qR}, \quad y_5 = \omega_m.$$
 (11)

$$\begin{cases}
\frac{dy_1}{dt} = -c_1y_1 - c_2y_2 + \omega y_3 + v_{dS}, \\
\frac{dy_2}{dt} = -c_3y_1 - c_4y_2 + \omega y_4 - py_4y_5, \\
\frac{dy_3}{dt} = -\omega y_1 - c_1y_3 - c_2y_4 + v_{qS}, \\
\frac{dy_4}{dt} = -\omega y_2 - c_3y_3 - c_4y_4 + py_2y_5, \\
\frac{dy_5}{dt} = c_5y_1y_4 - c_5y_2y_3 + c_6.
\end{cases}$$
(12)

Mathematical assessment of PWM control of a induction motor

・ロン ・回 とくさと くさとう さ

・ロト ・回ト ・ヨト ・ヨト

Mathematical assessment of PWM control of a induction motor

æ

・ロト ・回ト ・ヨト ・ヨト

æ

Sensorless control

Main ingredients:

- motion of the rotor induces a current back into the voltage of the stator
- this signal can be recovered by sampling the stator voltage
- the phase of this signal depends on the position of the rotor
- this signal can be used in place of the position detector circuitry that industry would like to remove

(日) (同) (三) (三)

Position dependent mutual inductance

Single applied stator voltage

Induced magnetic field

$$m_{s1}(\delta) = \int_{\delta - \pi/2}^{\delta + \pi/2} lB_a(\theta) d\theta$$

Induced voltage in the stator

17 / 21

Switching of the voltage to the stator

The voltage differences are functions of these position dependent mutual inductances

$$u_{\sigma} = u_a + u_b + u_c, \quad u_{\sigma}^{(1)} - u_{\sigma}^{(4)} = 2U_d \frac{l_{\sigma a} l_{\sigma b} + l_{\sigma a} l_{\sigma c} - 2l_{\sigma b} l_{\sigma c}}{l_{\sigma a} l_{\sigma b} + l_{\sigma a} l_{\sigma c} + l_{\sigma b} l_{\sigma c}}$$

Mathematical assessment of PWM control of a induction motor

(日) (同) (三) (三)

Construction of the position estimate

$$p_a = u_{\sigma}^{(1)} - u_{\sigma}^{(4)}, \qquad p_b = u_{\sigma}^{(3)} - u_{\sigma}^{(6)}, \qquad p_c = u_{\sigma}^{(5)} - u_{\sigma}^{(2)}$$
$$p_{\alpha} + jp_{\beta} = p_a + e^{2\pi j/3} p_b + e^{-2\pi j/3} p_c$$

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

References

- M. W. Degner and R. D. Lorenz, Using Multiple Saliencies for the Estimation of Flux, Position and Velocity in AC Machines, *IEEE Transactions on Industry Applications*, Vol, 34, No. 5, Sept/Oct. 1998, PP. 1097-1104.
- J.-I. Ha and S.-K. Sul, Sensorless Field-Oriented Control of an Induction Machine by High-Frequency Signal Injection, *IEEE Transactions on Industry Applications*, Vol, 35, No. 1, Jan/Feb. 1999, PP. 45-51.
- J. Holtz, Sensorless Control of Induction Motor Drives, *Proceedings of the IEEE*, Vol. 90, No. 8, Aug. 2002, pp. 1359-1394.
- M. Linke, R. Kennel, and J. Holtz, Sensorless Speed and Position Control of Permanent Magnet Synchronous Machines, *IECON*, 28th Annual Conf. of the *IEEE Industrial Electronics Society*, Sevilla/Spain, 2002, on CD ROM.
- M. Schroedl, Sensorless Control of AC Machines at Low Speed and Standstill based on the Inform Method, *IEEE Industry Applications Society Annual Meeting*, Pittsburgh, Sept. 30 - Oct. 4, 1996, pp. 270-277.

ヘロン ヘロン ヘヨン ヘヨン

Thank you!

Mathematical assessment of PWM control of a induction motor

21 / 21

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・