
Gaussian Process Approach to Interpolation and
Correlation Estimate

References:

Online information: http://www.gaussianprocess.org/

Nice easy book: Gaussian Processes for Machine Learning, by
Rasmussen and Williams
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Gaussian Processes - 1 metal
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Prior assumption on both observed and interpolated points:
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Many choices for Kernel function, e.g.

K (xi , xj) =

{
exp{− 1

h |xi − xj |} , Ornstein-Uhlenbeck
exp{− 1

h |xi − xj |2} , Radial basis functions
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Gaussian Processes - 1 metal
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Posterior conditional on observations is normal

(y∗|(y1, . . . , yn)
′)

d
=N ( mean; var)

mean = K (x∗, x)K (x , x)−1y

var = 1− K (x∗, x)K (x , x)−1K (x , x∗)
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Gaussian Processes - 2 metals

I Spatial and metal-metal correlations can be intertwined

I We use tensor product Kernel function to disentangle
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I We computed the Posterior of interpolation point given the
observations – it’s still Normal (of course)
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Gaussian Processes - 2 metals

I Need to learn correlation (ρ) and bandwidth (h)

I Can do this via Maximum Likelihood Estimation (MLE)

I Alternatively, can compute the spatial correlation to determine
h and then use MLE for ρ

I As h ↓ 0, the MLE of correlation reduces to pair-wise
metal-metal correlation
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Gaussian Processes – results

Cd – h = 0.01, estimated ρ = 0.14 with As
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Gaussian Processes – results

As – h = 0.01, estimated ρ = 0.14 with Cd
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Gaussian Processes – results
Cd – h = 0.01, estimated ρ = 0.14 with As – zoomed in
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Notice that extremes not always at data points
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Gaussian Processes – results
Cd – h = 0.01, estimated ρ = 0.14 with As – posterior std.dev
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Notice that variance drops to zero at data points
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Gaussian Processes – varying bandwidth

Cd – h = 0.0025, estimated ρ = 0.21 with As
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Gaussian Processes – varying bandwidth

Cd – h = 0.005, estimated ρ = 0.17 with As
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Gaussian Processes – varying bandwidth

Cd – h = 0.01, estimated ρ = 0.14 with As
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