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Abstract

The focus of this paper is the homogeneous convex feasibility problem, which is
the following question: Given an m-dimensional subspace of Rn, does this subspace
intersect a fixed convex cone solely in the origin or are there further intersection
points? This problem includes as special cases the linear, the second order, and the
semidefinite feasibility problems, where one simply chooses the positive orthant, a
product of Lorentz cones, or the cone of positive semidefinite matrices, respectively.
An important role for the running time of algorithms solving the convex feasibility
problem is played by Renegar’s condition number. The (inverse of the) condition of
an input is basically the magnitude of the smallest perturbation, which changes the
status of the input, i.e., which makes a feasible input infeasible, or the other way
round. We will give an average analysis of this condition for several classes of convex
cones, and one that is independent of the underlying convex cone. We will also
describe a way of deriving smoothed analyses from our approach. We will achieve
these results by adopting a purely geometric viewpoint leading to computations in
the Grassmann manifold.

Besides these main results about the random behavior of the condition of the
convex feasibility problem, we will obtain a couple of byproduct results in the do-
main of spherical convex geometry.

Kurzbeschreibung

Den Mittelpunkt dieser Arbeit bildet das homogene konvexe Lösbarkeitsproblem,
welches die folgende Frage ist: Gegeben sei ein m-dimensionaler Unterraum des Rn;
schneidet dieser Unterraum einen gegebenen konvexen Kegel nur im Ursprung, oder
gibt es weitere Schnittpunkte? Dieses Problem umfasst als Spezialfälle das lineare,
das quadratische, und das semidefinite Lösbarkeitsproblem, wobei man als konvexen
Kegel den positiven Orthanten, ein Produkt von Lorentzkegeln, bzw. den Kegel der
positiv semidefiniten Matrizen wählt. Für die Laufzeit von Algorithmen, welche
das konvexe Lösbarkeitsproblem lösen, spielt die Renegarsche Konditionszahl eine
wichtige Rolle. Die Kondition einer Eingabe, bzw. ihr Inverses, ist gegeben durch
die Größe einer kleinsten Störung, welche den Status der Eingabe von ‘feasible’ zu
‘infeasible’ bzw. von ‘infeasible’ zu ‘feasible’ ändert. Wir werden eine Durchschnitts-
analyse dieser Kondition für verschiedene Klassen von konvexen Kegeln angeben,
sowie eine, welche unabhängig ist von der Wahl des zugrunde gelegten konvexen
Kegels. Wir werden desweiteren einen Weg beschreiben, auf dem auch geglättete
Analysen mittels unseres Ansatzes erzielt werden können. Wir erreichen diese Er-
gebnisse mit Hilfe einer rein geometrischen Sichtweise, welche zu Berechnungen in
der Grassmann-Mannigfaltigkeit führt.

Neben diesen Hauptergebnissen über das zufällige Verhalten der Kondition des
konvexen Lösbarkeitsproblems werden wir auch einige Nebenergebnisse im Bereich
der sphärischen Konvexgeometrie erzielen.
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Chapter 1

Introduction

The focus of this paper is the homogeneous convex feasibility problem, which is the
following simple question:

Given an m-dimensional subspace of Rn, does this subspace intersect a fixed
convex cone solely in the origin or are there further intersection points?

This problem includes as special cases the linear, the second order, and the semidef-
inite feasibility problems, where one simply chooses the positive orthant, a product
of Lorentz cones, or the cone of positive semidefinite matrices, respectively. We will
give an average analysis of Renegar’s condition number for several classes of convex
cones, and one that is independent of the underlying convex cone. We will also
describe a way of deriving smoothed analyses from our approach. We will achieve
these results by adopting a purely geometric viewpoint leading to computations in
the Grassmann manifold.

1.1 Complexity of numerical algorithms

Algorithms in computer science are usually discrete, i.e., they can be described as
programs on a Turing machine. The complexity of these algorithms is therefore
commonly measured by the amount of time/space the Turing machine needs dur-
ing the computation. By contrast, numerical algorithms are usually described by
operations on real numbers. Taking into account the internal representation of real
numbers as floating point numbers, one could translate every (continuous) numeri-
cal algorithm into a “Turing machine program” and analyze it just as intrinsically
discrete algorithms like for example 3-SAT. But the drawbacks of such a procedure
are immediate: First of all, it would make an analysis extremely difficult, and second
it would hide most of the essential information. For this reason, it is appropriate
to change the model for numerical algorithms and replace the Turing machine by
a BSS machine (see [6]), which can process real numbers as real numbers and thus
has no need for a painful floating point routine. If we have a decision problem

f : Rk → {0, 1} , A 7→ f(A) ,

then it may happen that this problem is undecidable, i.e., there exists no BSS ma-
chine that computes the function f . This happens if the fibers f−1(0) resp. f−1(1)
are “too complicated”, for example if one of them is the Mandelbrot or a Julia
set (cf. [6]). Problems coming from numerics or, as in our case, from convex pro-
gramming, are not of this type. Broadly speaking, the boundary of the fibers
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2 Introduction

∂f−1(0) = ∂f−1(1) are “not too weird” and there are plenty of algorithms that
compute f .

Assuming that we have a numerical algorithm that computes f , how to analyze
its running time? It has turned out that for many numerical algorithms the condition
number plays a decisive role. We may describe the notion of condition in the case of
decision problems in the following way. Let us denote the fiber f−1(1) as the set of
feasible inputs, as opposed to the set of infeasible inputs, which shall denote the fiber
f−1(0). The interesting part is now the boundary ∂f−1(1) = ∂f−1(0), which we
call the set of ill-posed inputs. The reason for this convention is that ill-posed inputs
should be seen as numerically intractable. More precisely, a slightest perturbation
of an ill-posed input will make the output of the algorithm worthless, and not only
the input itself, also the intermediate results share this extreme fragility. Of course,
as we have mentioned earlier, the BSS machine has infinite precision so this is in
theory no problem. But it should be evident that at least every practical algorithm
has to handle inputs, which are close to the boundary, i.e., close to the set of ill-
posed inputs, with much more care than very well-posed inputs, and usually all
hope is lost when the input is ill-posed. The condition number is basically the
inverse of the distance to the set of ill-posed inputs. Notice that this quantity only
depends on the problem and the input, but not on the specific algorithm being used
to solve this problem. This is the most important feature of the condition number
and also the reason why the condition number is used for the analysis of the running
time, because it is a purely geometric quantity that, as it turns out, captures all
the complicated algorithmics. In summary, the higher the condition the closer the
input to being ill-posed the worse the running time of the algorithm.

Numerical algorithms may fail on ill-posed inputs. Take for example the in-
version procedure of (n × n)-matrices, which is not defined on the set of singular
matrices. For this reason, a worst-case analysis usually makes little sense for nu-
merical algorithms because it is simply ∞. Instead, one may perform an average
analysis, which consists of endowing the input space with a probability distribu-
tion, so that the running time becomes a random variable, and then compute the
distribution or tail estimates or the expectation of this random variable.

Smale suggested in [51] to use the concepts of condition numbers and average
analysis in a 2-part scheme for the analysis of numerical algorithms:

1. Bound the running time T (A) via

T (A) ≤
(

size(A) + (log of) condition(A)
)c
,

where size(A) denotes the dimension of the input space, and c is a universal
constant; and

2. analyze condition(A) under random A by giving estimates of the tail

Prob [condition(A) ≥ t] .

In contrast to worst-case analyses in computer science, which are usually as-
sumed to be too pessimistic, as a single bad input may “ruin” the worst-case per-
formance of an algorithm, average case analyses are usually assumed to be too
optimistic, or at least not a convincing explanation for an observed good perfor-
mance of an algorithm, as they strongly depend on the chosen distribution on the
inputs. Usually, this distribution is chosen to be a gaussian or a uniform distribu-
tion so that the analysis becomes feasible, but these distributions are not likely to
represent real-world scenarios.



1.2 The convex feasibility problem 3

As a way out of this dilemma, Spielman and Teng developed the new concept
of smoothed analysis, which is a blend of worst case and average analysis. Broadly
speaking, instead of considering all inputs (worst case), or one random input (av-
erage case), one considers all inputs endowed with a certain perturbation. The
variation of this perturbation determines whether the smoothed analysis resembles
more an average or a worst case analysis, and in some cases (cf. uniform smoothed
analysis) it even has the form of an interpolation parameter. Let us give a more
precise description of smoothed analysis by considering an input space M, which
is endowed with a metric, and which we assume to be compact and endowed with
a probability measure (take for example the unit sphere and the usual volume nor-
malized such that the volume of the whole sphere equals 1). Worst case, average,
and smoothed analyses of the function C : M → R are then simply the following
three quantities

worst case average smoothed

sup
A∈M

C (A) E
A∈U(M)

C (A) sup
Ā∈M

E
A∈U(B(Ā,σ))

C (A) ,

where U(M) denotes the uniform probability measure on M, and U(B(Ā, σ)) de-
notes the uniform probability measure on the ball of radius σ around Ā. Note that
for σ = 0 smoothed analysis becomes worst case analysis, and for σ = diam(M)
smoothed analysis becomes average analysis. For completeness, we should also
mention another commonly used perturbation model also known as Gaussian noise.
Assuming that the given input space is a euclidean space RN , this model assumes
that the input A is drawn from a normal distribution centered at Ā with variance σ2.
The role of the specific perturbation is often secondary. In fact, there are robust
smoothed analyses for several problems in numerics (see [21] and [13]), where a
smoothed analysis for a large class of different perturbation models is provided, all
leading to basically equivalent results.

For the matrix condition number there are even smoothed analyses for very
general discrete perturbations by Tao and Vu (see [55]). Their techniques are very
different compared to those used for continuous perturbations, but again the results
are similar to the continuous case. It is an open and presumably very difficult
question if one can give smoothed analyses under this kind of discrete perturbations
for other condition numbers, like the Renegar or the Grassmann condition.

1.2 The convex feasibility problem

Let us anticipate some material that we will cover in Chapter 2 so that we can state
the main results. In Chapter 2 we will have a closer look at the Renegar and the
Grassmann condition.

A linear programming (LP) problem may be given in the following standard
form:

minimize cTx , subject to Ax = b , x ≥ 0 , (primal)

maximize bT y , subject to AT y ≤ c , (dual)

where A ∈ Rm×n, c, x ∈ Rn, b, y ∈ Rm, and the inequalities are meant component-
wise. Throughout the paper we will assume that 1 ≤ m ≤ n− 1, as the case m ≥ n
is typically trivial.1 LP-solvers usually work in two steps. First, they transform the

1If m ≥ n and b 6= 0, then for almost all A ∈ Rm×n the system of linear equations Ax = b
either has a unique solution (m = n) or has no solutions (m > n).



4 Introduction

problem into an equivalent form, which has a trivial or easy-to-find feasible point,
i.e., a point x0 satisfying Ax0 = b and x0 ≥ 0 in the primal case, or a point y0 satis-
fying AT y0 ≤ c in the dual case. Then in the second step they minimize or maximize
the corresponding linear functional via a simplex or an interior point method.

For simplicity, we will assume b = 0 and c = 0 and concentrate on the feasibility
problem. In other words, we are interested in the homogeneous (linear) feasibility
problem

∃x 6= 0 , such that Ax = 0 , x ≥ 0 , (primal)

∃y 6= 0 , such that AT y ≤ 0 . (dual)

Although it seems that this problem should be much easier than the original linear
programming problem, it is in fact basically equivalent due to the duality theorem
of linear programming.

The linear programming problem has a vast generalization to what is called
(general) convex programming. Next, we will describe this generalization. Note
that the (componentwise) inequality v ≥ w, where v, w ∈ Rn, can be paraphrased
by the membership v − w ∈ Rn+, where Rn+ = R+ × . . . × R+ denotes the positive
orthant. In the primal convex programming problem the inequality x ≥ 0 is thus
replaced by the request x ∈ C, where C ⊂ Rn denotes a regular cone, which means
the following:

• C is a convex cone, i.e., for all x, y ∈ C and positive λ, µ also λx+ µy ∈ C,

• C is closed,

• C has nonempty interior,

• C does not contain a linear subspace of dimension ≥ 1.

We call C the reference cone of the convex programming problem. The dual cone C̆
is defined by

C̆ := {z ∈ Rn | zTx ≤ 0 ∀x ∈ C} ,
and if C is a regular cone then so is its dual C̆ (cf. Section 3.1). In the dual
convex programming problem the inequality AT y ≤ c is replaced by the request
AT y − c ∈ C̆. A special feature of most reference cones used in convex program-
ming is that they are self-dual, which means that C̆ = −C. See for example the
textbook [9] for more on the general convex programming problem.

Our focus lies on the homogeneous convex feasibility problem, which is the prob-
lem

∃x 6= 0 , such that Ax = 0 , x ∈ C , (primal)

∃y 6= 0 , such that AT y ∈ C̆ , (dual)

where A ∈ Rm×n, and C ⊂ Rn is a regular cone. We have already seen that the lin-
ear case follows by choosing C = Rn+ the positive orthant. Further interesting cases
are second-order cone programming (SOCP) and semidefinite programming (SDP).
They are obtained via the following choices of the reference cone C:

(LP): C = Rn+
(SOCP): C = Ln1 × . . .× Lnk

(SDP): C = Sym`
+ := {M ∈ Sym` |M is positive semidefinite} ,

(1.1)
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where Lk := {x ∈ Rk | xk ≥ ‖x̄‖, x̄ = (x1, . . . , xk−1)} shall denote the k-dimensional
Lorentz cone, and Sym` := {M ∈ R`×` | MT = M} the set of symmetric (` × `)-
matrices. These cones are all self-dual.

In terms of the general framework of decision problems that we described in the
last section, we thus have for every regular cone C ⊂ Rn and 1 ≤ m ≤ n − 1 two
decision problems

fP : Rm×n → {0, 1} , A 7→

{
1 if ∃x 6= 0 : Ax = 0 , x ∈ C
0 else ,

fD : Rm×n → {0, 1} , A 7→

{
1 if ∃y 6= 0 : AT y ∈ C̆
0 else .

To ease the notation we define the set of primal/dual feasible/infeasible instances

FP := f−1
P (1) , IP := f−1

P (0) ,

FD := f−1
D (1) , ID := f−1

D (0) .

A well-known theorem of alternatives says that for almost all A ∈ Rm×n either the
primal or the dual problem is feasible. More precisely, the boundaries of the fibers
of fP and fD all coincide with the intersection FP ∩ FD, i.e., we have

FP ∩ FD = ∂FP = ∂IP = ∂FD = ∂ID =: Σ(C)

(see Proposition 2.2.1). This is the set of ill-posed inputs and a central object of
our analysis. In terms of the functions fP and fD we have for A ∈ Rm×n \ Σ(C)

fP(A) = 1− fD(A) .

In summary, we have for every regular cone C ⊂ Rn and every 1 ≤ m ≤ n− 1 a
decision problem, which consists of the question whether the input is primal feasible
or dual feasible (or ill-posed). A condition number for this feasibility problem is
given by Renegar’s condition number. This condition number is given by the inverse
of the relative distance to the set of ill-posed inputs, i.e.,

CR : Rm×n \ {0} → [1,∞] , CR(A) :=
‖A‖

d(A,Σ(C))
,

where ‖A‖ denotes the usual operator norm, and d(A,Σ(C)) = min{‖A − A′‖ |
A′ ∈ Σ(C)}. Equivalently, one can describe the inverse of the Renegar condition as
the size of the maximum perturbation of A, which does not change the “feasibility
property” of A,

CR(A)−1 = max
{
r

∣∣∣∣‖∆A‖ ≤ r · ‖A‖ ⇒ (
A+ ∆A ∈ FP if A ∈ FP

A+ ∆A ∈ FD if A ∈ FD

)}
.

The Renegar condition is known to control the running time of geometric algo-
rithms like for example the ellipsoid or interior-point methods. For example, in [61]
an interior-point algorithm is described that solves the general homogeneous convex
feasibility problem (for C a self-scaled cone with a self-scaled barrier function) in

O(
√
νC · ln(νC · CR(A)))
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interior-point iterations. Here, νC denotes the complexity parameter of a suitable
barrier function for the reference cone C. The typical barrier functions for the LP-,
the SOCP-, and the SDP-cone as defined in (1.1) yield the complexity parameters

(LP): νC = n

(SOCP): νC = 2 · k

(SDP): νC = ` .

(See for example [46] for more on this topic.) Additionally, it is shown in [61] that
the condition number of the system of equations that is solved in each interior-point
step is bounded by a factor of CR(A)2. See the references in [61] for further results
on the estimate of running times of geometric algorithms for convex programming
in terms of the Renegar condition.

The first part of Smale’s 2-part scheme for the analysis of the convex feasibility
problem is thus a well-studied question. In this work, we will treat the second part
of this scheme, namely, we will address the questions about the random behavior of
the condition of the convex feasibility problem.

For the analysis of the Renegar condition it turns our that it has the big draw-
back, that it mixes two causes for bad conditioning (cf. Section 2.2.1). The Grass-
mann condition is an attempt to overcome this drawback. One way to define it is
via

CG(A) :=

{
CR(A◦) if rk(A) = m

1 if rk(A) < m ,

where A◦ denotes the projection of A on the Stiefel manifold Rm×n◦ := {B ∈ Rm×n |
BBT = Im}, which we like to call in this context the set of “balanced matrices”.
One can compute A◦ by replacing each singular value in A by 1. In Chapter 2 we
will discuss this in detail.

The Grassmann condition may be interpreted as a coordinate-free version of the
Renegar condition as it solely depends on the kernel of A (which is not immediate
from the above definition). Furthermore, the Grassmann condition is the inverse of
the sine of the (geodesic) distance to the set of ill-posed inputs in the Grassmann
manifold, which is the reason for us to name this quantity the Grassmann condition.
See Section 2.3 for more details.

The Grassmann condition is connected to the Renegar condition via the following
two inequalities (cf. Theorem 2.3.4 in Section 2.3)

CG(A) ≤ CR(A) ≤ κ(A) · CG(A) , (1.2)

where κ(A) denotes the Moore-Penrose condition, i.e., the ratio between the largest
and the smallest singular value of A. The random behavior, both average and
smoothed, of the Moore-Penrose condition is a well-studied object, cf. [24], [20], [14].
So we may content ourselves with results about the random behavior of the Grass-
mann condition, as this will transfer to results about the Renegar condition through
the above inequalities.

1.3 Tube formulas

Tube formulas naturally arise in the analysis of condition numbers, as is immediate
from the following observation. If the condition number is given by the inverse
distance to the set of ill-posed inputs, then the condition of an input A exceeds t,
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Figure 1.1: The tube around a polytope and its decomposition

Figure 1.2: The decomposition of the tube around a polyhedral cap

iff the distance of A to the set of ill-posed inputs is less than 1/t, i.e., iff A lies
in the tube of radius 1/t around the set of ill-posed inputs. So if the input space
is endowed with a probability measure µ, then the probability that the condition
number is larger than t equals the µ-volume of the tube of radius 1/t around the
set of ill-posed inputs.

A prominent theorem by H. Weyl (see [63]) says that the Lebesgue-volume of a
tube of radius r around a compact submanifold of euclidean space or of the sphere
basically has the form of a polynomial in r. In fact, the volume of the tube around
a compact convex subset of euclidean space is a polynomial, the so-called Steiner
polynomial. See Figure 1.1 for a 2-dimensional example. In the sphere this is not
entirely true, as the monomials are replaced by some other functions due to the
nonzero curvature of the sphere. So one could say that for small radius the volume
of the tube is approximately a polynomial. See Figure 1.2 for an example in the
2-sphere.

We have already mentioned that the Grassmann condition is given by the inverse
of the distance to the set of ill-posed inputs in the Grassmann manifold. The main
step in our analysis is the derivation of a formula for the volume of the tube around
the set of ill-posed inputs. In fact, for the interesting choices of C, i.e., those which
yield LP, SOCP, or SDP, we will only get upper bounds, but we believe that these
tube formulas are fairly sharp.

Estimating these tube formulas to get meaningful tail estimates then still re-
mains a nontrivial task. For this reason we have decided also to include some
first-order estimates. By this notion we mean that we only estimate the linear part
of the polynomial in the tube formula and forget about the rest. This might seem
radical at first sight, but for small radius the linear part is the decisive quantity.
The simplification step eliminates numerous technical difficulties, which allows an
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improvement of the estimates for a large class of convex programs (see the next
section). But of course these first-order results have to be taken with a grain of salt,
as they are merely an indicator for the true average behavior of the Grassmann
condition.

1.4 Results

Let A ∈ Rm×n, m < n, be a normal distributed random matrix, i.e., the entries of A
are i.i.d. standard normal. We will prove the following tail estimates and estimates
of the expected logarithm of the Grassmann condition. If C is any regular cone
then

Prob[CG(A) > t] < 6 ·
√
m(n−m) · 1

t
,

if t > n1.5. This yields the following estimate for the expected logarithm of the
Grassmann condition

E [ln CG(A)] < 1.5 · ln(n) + 2 ,

if n ≥ 4. This estimate of the expected condition of convex programming is to
our knowledge the first known bound that holds in this generality. The first-order
estimates show no significant changes except that the tail estimate gets a smaller
multiplicative constant, and the assumption t > n1.5 may be dropped.

In [18] it was observed that for linear programming the average behavior of the
GCC condition number, which is a slight variation of the Renegar condition, may
be estimated independently of n and only depending on the smaller quantity m.
We can achieve this also for the Grassmann condition. In fact, we will show that in
the LP-case, i.e., for C = Rn+, we have for t > m ≥ 8

Prob[CG(A) > t] < 29 ·
√
m · 1

t
,

E [ln CG(A)] < ln(m) + 4 .

The first-order estimates show again no significant changes except that the multi-
plicative constant for the tail estimate is significantly smaller, and the assumption
t > m ≥ 8 may be dropped.

In the definition of the GCC condition number the product structure of the
positive orthant Rn+ = R+ × . . . × R+ plays a fundamental role. It was therefore
not clear to what extent the independence of n in the linear programming case
extends to more general classes of convex programming. We will show that for a
second-order program with only one inequality, which we call SOCP-1, i.e., for the
case C = Ln, it holds that for t > m ≥ 8

Prob[CG(A) > t] < 20 ·
√
m · 1

t
,

E [ln CG(A)] < ln(m) + 3 .

The first-order estimates show again only some minor changes in the constants. We
may conclude that, although being merely a toy example, the SOCP-1 case is after
the LP case the second convex program, where the average behavior of the condition
is shown to be independent of the parameter n.

These are the nonasymptotic bounds that we will prove. Besides these we have
first-order estimates which suggest that the independence of the parameter n holds
for any self-dual cone, so basically for any cone that is currently used for convex
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programming. More precisely, we will show that for the SOCP case we have the
following first-order estimates

Prob[CG(A) > t] ≤ 4 ·m · 1
t

+
g(n,m)
t2

,

where g(n,m) denotes some function in n and m. Note that if we had a nonasymp-
totic estimate of the form Prob[CG(A) > t] ≤ c · m · 1

t where c is some positive
constant, then this would imply E [ln CG(A)]) ≤ ln(m) + ln(c). The improvement of
the first-order estimate to a nonasymptotic statement remains a (technical) problem
that we are confident to solve in the near future.

The same first-order bounds hold for any self-dual cone, if Conjecture 4.4.17 is
true. This conjecture states that the sequence of spherical intrinsic volumes form a
unimodal sequence for self-dual cones. Log-concavity and unimodality is a highly
useful and widely spread phenomenon (cf. the article [54]). The euclidean intrinsic
volumes are known to be log-concave and thus unimodal, and we will show that
the spherical intrinsic volumes of a product of Lorentz cones form a log-concave
and thus unimodal sequence. We believe that Conjecture 4.4.16 and in particular
Conjecture 4.4.17 hold, but could not prove it yet. So all this indicates that the
independence of the parameter n holds for any self-dual program.

These are the results for the average case. To state also the results of the
smoothed analysis appropriately we needed some technical prerequisites that would
interrupt the course of this section. Also, these results are only first order estimates,
and compared to the average analyses they are not yet good enough to be seen as a
true representation of the smoothed behavior of the Grassmann condition. That is
why we leave out the discussion of these results at this point and refer to Section 7.3
for the details.

Besides these main results about the random behavior of the condition of the
convex feasibility problem, we have obtained a couple of byproduct results that we
will state next.

1.4.1 Spherical intrinsic volumes

In the context of tube formulas (cf. Section 1.3) one naturally arrives at the (eu-
clidean or spherical) intrinsic volumes. The intrinsic volumes are important in-
variants of compact convex sets. We will derive a simple formula for the intrinsic
volumes of a product of spherical convex sets, which is a direct analogon to the
euclidean case. The formula for the euclidean case has been known before, but we
will also give a new proof for this formula. We will also prove a simple conversion
formula between the euclidean intrinsic volumes of the intersection of a closed con-
vex cone C with the unit ball and the spherical intrinsic volumes of the intersection
of C with the unit sphere. See Section 4.4 for more details, and see Chapter B for
the proofs.

As a corollary, we will get that the intrinsic volumes of products of spherical
balls form a log-concave sequence. The conjecture that this log-concavity property
holds for all spherical convex sets is also first formulated in this paper.

1.4.2 The semidefinite cone

Finally, we mention one result that might seem secondary at first sight, but that
we think has a great potential for further interesting research. This result is the
computation of the intrinsic volumes of the cone of positive semidefinite matrices. In
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(a) feasible (b) ill-posed (c) infeasible

Figure 1.3: The euclidean setting of the feasibility problem.

Section C.2 we will derive formulas for these intrinsic volumes (cf. also Section 4.4.1)
that include a class of integrals that can be seen as an interesting variation of
“Mehta’s integral”. We think that a good understanding of these integrals will lead
to interesting new results about semidefinite programming (cf. Section C.3).

1.5 Outline

For the different stages of our analysis we will adopt different viewpoints on the
homogeneous convex feasibility problem. First, we think of a subspace as the kernel
or the image of a matrix; second, we identify a subspace with its intersection with
the unit sphere; and third, we think of a subspace as a point in the Grassmann
manifold. Each of these viewpoints has its own justification, and it is essential to
change the viewpoint in order to get the analysis that we are aiming at.

The interpretation of a subspace as the kernel or the image of a matrix naturally
comes from the applications. Manipulating a subspace by an algorithm means
manipulating its defining matrix, so this viewpoint is the natural starting point
for our analysis. In Chapter 2 we will recall the matrix condition (Moore-Penrose
condition), describe the homogeneous convex feasibility problem, and recall the
definition of Renegar’s condition number. We will then give several equivalent
definitions of the Grassmann condition and explain the interrelation between the
Renegar and the Grassmann condition.

Replacing the subspaces by subspheres of the unit sphere comes from the specific
form of the problem that we analyze. Note that the intersection of a subspace with
a cone contains a nonzero point iff it contains a point of norm 1. In other words,
nontrivial intersection of the subspace with a cone means nonempty intersection of
the corresponding subsphere with the corresponding cap, i.e., with the intersection
of the cone with the unit sphere. The advantage of this viewpoint is that the super-
fluous “cone direction” vanishes and reveals the essential geometry of the feasibility
problem, which is in fact spherical. See Figure 1.3 and Figure 1.4 for a display of
the euclidean and the spherical setting of the feasibility problem. In Chapter 3 we
will deal with elementary topics in spherical convex geometry to prepare the ground
for the upcoming analysis. Chapter 4 mainly treats Weyl’s tube formulas and the
consequential notions of (euclidean and spherical) intrinsic volumes.

In the third viewpoint we will consider a subspace simply as a point on the
Grassmann manifold. This viewpoint is essential for the analysis as it becomes



1.6 Credits 11

(a) feasible (b) ill-posed (c) infeasible

Figure 1.4: The spherical setting of the feasibility problem.

conceptually clear how to perform smoothed and average analyses. In Chapter 5
we will describe how we can perform computations in the Grassmann manifold. We
will use this in Chapter 6 where we will prove an extension of Weyl’s tube formula
to certain hypersurfaces in the Grassmann manifold. This main result then allows
us in Chapter 7 to achieve the tail estimates of the Grassmann condition that we
already presented in the previous section.

1.6 Credits

The overall geometric methods we use for our analysis grew out of the series of
papers [16], [15], [17]. In fact, this series was the starting point of our research, and
our analysis was an attempt to transfer the results of [17] to the convex feasibility
problem.

The concept of condition number in convex programming was introduced by
Renegar in the 90’s (see [43], [44], [45]). The Grassmann condition, which is the
main object of our analysis, was already partly studied by Belloni and Freund [5];
this work led us to the correct relation (1.2) between the Grassmann condition and
Renegar’s condition number.

As for the spherical geometry and the spherical intrinsic volumes/curvature mea-
sures it was a great luck for us having found Glasauer’s thesis [30] (see also [31] for a
summary of the results). We see the relation between his work and ours as comple-
mentary, as his results are in some aspects more general but in some other aspects
they are very restricted and even useless for the questions that we try to answer.
While his approach mainly uses measure theoretic arguments, we use differential
geometry as a basic tool. Our approach is thus more direct and gives more insight
in those cases that are interesting for the convex feasibility problem.

Concerning the geometry of the Grassmann manifold the articles [25] and [3]
were indispensable for us for the computations that we had to perform and also for
the understanding of the great use of fiber bundles.

For surveys on smoothed analysis of condition numbers see [12] and [11] and
the references therein. We will mention further sources that we rely on in the
corresponding sections.
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Chapter 2

The Grassmann condition

In this chapter we will recall some facts from numerical linear algebra, discuss the
homogeneous convex feasibility problem and Renegar’s condition number, and define
the main object of this paper, the Grassmann condition.

2.1 Preliminaries from numerical linear algebra

Before we discuss the convex feasibility problem, we will review in this section some
results from numerical linear algebra that we will need in the course of this paper.
Namely, we will recall the matrix condition number, and separately we will discuss
two further topics in the following two subsections. The first separate topic is the
singular value decomposition, which is of central importance to understand the
geometry of a linear operator and that we will also need for the computations in
the Grassmann manifold in Chapter 5. The second topic is the projection map onto
the Stiefel manifold and the question how a linear operator needs to be perturbed
so that its kernel or the image of its adjoint contain a given point. This last subject
will be a bit technical, but it will result in a clear connection between the Renegar
and the Grassmann condition, that we will present in Section 2.3.

For square matrices A ∈ Rn×n the matrix condition number is defined as

κ(A) :=

{
‖A‖ · ‖A−1‖ if rk(A) = n

∞ if rk(A) < n .

Here, and throughout the paper, ‖A‖ denotes the usual spectral norm of A ∈ Rn×n,
i.e.,

‖A‖ = max{‖Ax‖ | x ∈ Rn , ‖x‖ = 1} ,

where ‖x‖ denotes the euclidean norm of x ∈ Rn.
The definition of the matrix condition number may be generalized to the rectan-

gular case in the following way. Here, and throughout the paper, when we consider
rectangular matrices Rm×n, we assume m ≤ n. Let A ∈ Rm×n with rk(A) = m.
Interpreting A as a linear operator A : Rn → Rm, let Ā := A|(kerA)⊥ denote the
restriction of A to the orthogonal complement of the kernel of A. The restriction Ā
is a linear isomorphism and thus has an inverse Ā−1. The Moore-Penrose inverse
A† ∈ Rn×m of A may now be defined as

A† : Rm → Rn , A†(x) := Ā−1(x) .

13
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The generalization of the matrix condition number to the rectangular case is given
by

κ(A) :=

{
‖A‖ · ‖A†‖ if rk(A) = m ,

∞ if rk(A) < m .

The Eckart-Young Theorem (cf. Theorem 2.1.5) characterizes the matrix con-
dition as the relativized inverse distance to the set of rank-deficient matrices. Let
us denote the set of rank-deficient (m× n)-matrices and its complement, the set of
full-rank (m× n)-matrices, by

Rm×nrd := {A ∈ Rm×n | rk(A) < m}

Rm×n∗ := Rm×n \ Rm×nrd = {A ∈ Rm×n | rk(A) = m} .

Besides the spectral norm we also employ the Frobenius norm

‖A‖F =
(∑
i,j

a2
ij

)1/2

,

where A = (aij) ∈ Rm×n. An important property of the spectral norm and of the
Frobenius norm is their invariance under multiplication by elements of the orthog-
onal group O(n) = {Q ∈ Rn×n | QTQ = In}:1

‖Q1 ·A ·QT2 ‖ = ‖A‖ , ‖Q1 ·A ·QT2 ‖F = ‖A‖F

for all A ∈ Rm×n, Q1 ∈ O(m), Q2 ∈ O(n). If A ∈ Rm×n has rank 1, then A can be
written in the form A = u · vT for some u ∈ Rm, v ∈ Rn, and we have

‖A‖ = ‖A‖F = ‖u‖ · ‖v‖ , (2.1)

where ‖x‖, x ∈ Rk, denotes as usual the euclidean norm of x.
We denote the metric on Rm×n induced by the spectral norm by d(A,B) :=

‖A−B‖, and the metric induced by the Frobenius norm by dF (A,B) := ‖A−B‖F .
For A ∈ Rm×n and M⊂ Rm×n we define

d(A,M) := inf{d(A,B) | B ∈M} ,

and similarly for dF (A,M).

Proposition 2.1.1. Let A ∈ Rm×n∗ be a full-rank (m×n)-matrix. Then the distance
of A to the set of rank-deficient matrices is the same for the operator norm as for
the Frobenius norm, i.e.,

d(A,Rm×nrd ) = dF (A,Rm×nrd ) .

Furthermore, the matrix condition of A is given by the inverse of the relative distance
of A to the set of rank-deficient matrices, i.e.,

κ(A) =
‖A‖

d(A,Rm×nrd )
=

‖A‖
dF (A,Rm×nrd )

.

Proof. This follows from the Eckart-Young Theorem 2.1.5 treated below. 2

1This is unfortunately the classical notation for the orthogonal group; but the danger of confus-
ing O(n) with the set of at most linearly growing functions is marginal, as the context will make
the notation unambiguous.
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2.1.1 The singular value decomposition

For most of our considerations involving matrices, the singular value decomposition
is of fundamental importance, as it reveals the basic geometric properties of the
linear operator.

Theorem 2.1.2 (SVD). Let A ∈ Rm×n, m ≤ n. Then there exist orthogonal
matrices Q1 ∈ O(m), Q2 ∈ O(n), and uniquely determined nonnegative constants
σ1 ≥ . . . ≥ σm ≥ 0, such that

A = Q1 ·

(
σ1 0 ··· 0

...
...

...
σm 0 ··· 0

)
·QT2 . (2.2)

Proof. See for example [32, Sec. 2.5.3] or [60, Lect. 4]. 2

The decomposition of A in (2.2) is called a singular value decomposition (SVD)
of A and the constants σ1 ≥ . . . ≥ σm are called the singular values of A. The
singular values have a geometric interpretation as the lengths of the semi-axes of
the hyperellipsoid given by the image of the m-dimensional unit ball under the
map A. We state this in the following proposition.

Proposition 2.1.3. Let A ∈ Rm×n, m ≤ n, and let Bm denote the unit ball in Rm
centered at the origin. Then the singular values σ1 ≥ . . . ≥ σm of A coincide with
the lengths of the semi-axes of the hyperellipsoid A(Bm). In particular,

σ1 = min{r | Bn(r) ⊇ A(Bm)} ,
σm = max{r | Bn(r) ⊆ A(Bm)} ,

where Bn(r) denotes the n-dimensional ball of radius r around the origin.

Proof. See for example [60, Lect. 4]. 2

With the help of the singular value decomposition we can give new formulas for
the aforementioned quantities associated to A.

Corollary 2.1.4. Let A ∈ Rm×n, m ≤ n, have a SVD as in (2.2). Then

1. ‖A‖ = σ1 and ‖A‖F =
√
σ2

1 + . . .+ σ2
m,

2. A† = Q2 ·
(
D
0

)
·QT1 , with D := diag(σ−1

1 , . . . , σ−1
m ), if rk(A) = m,

3. ‖A†‖ = σ−1
m , and κ(A) = σ1

σm
, if rk(A) = m.

Proof. The first part follows from the invariance of the operator norm and the
Frobenius norm under left and right multiplication by orthogonal matrices. For the
second part we may assume w.l.o.g. that Q1 = Im and Q2 = In. For this case the
claim is easily verified from the definition of A†. The third part follows from the
first two parts. 2

Recall that for A ∈ Rm×n and M ⊂ Rm×n we have defined the distance
d(A,M) = inf{d(A,B) | B ∈ M}, and similarly for dF (A,M). We additionally
define

argmin d(A,M) := {B ∈M | d(A,B) = d(A,M)} ,

and similarly we define argmin dF (A,M). The next result implies Proposition 2.1.1.
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Theorem 2.1.5 (Eckart-Young). Let A ∈ Rm×n∗ and let A have a singular value
decomposition as in (2.2). Furthermore, let

B := Q1 ·

 σ1 0 ··· 0

...
...

...
σm−1 0 ··· 0

0 0 ··· 0

 ·QT2 . (2.3)

Then B ∈ argmin d(A,Rm×nrd ) ∩ argmin dF (A,Rm×nrd ). In particular,

d(A,Rm×nrd ) = dF (A,Rm×nrd ) = σm .

Proof. First of all, it is easily seen from the singular value decomposition that
‖Av‖ ≥ σm for all v ∈ Sn−1. Let B′ ∈ Rm×nrd , and let v ∈ kerB′ ∩ Sn−1. Then

σm ≤ ‖Av‖ = ‖(A−B′)v‖ ,

which shows that ‖A − B′‖ ≥ σm. So we get dF (A,Rm×nrd ) ≥ d(A,Rm×nrd ) ≥ σm,
and as B ∈ Rm×nrd and dF (A,B) = σm we have indeed an equality. 2

2.1.2 Effects of matrix perturbations

In this section we will strive for a clear picture about how to perturb a given matrix
such that the defining subspaces contain some given point. We summarize the result
in the next proposition.

For x ∈ Rn \ {0} and W ⊆ Rn a linear subspace, we define the angle between x
and W via

^(x,W) := arccos
(‖ΠW(x)‖
‖x‖

)
∈ [0, π2 ] , (2.4)

where ΠW denotes the orthogonal projection onto W (cf. Chapter 3). Note that if
W = imAT for some A ∈ Rm×n, then the orthogonal complement of W is given by
W⊥ = kerA. Note also that the angle between x and W⊥ is given by

^(x,W⊥) = π
2 − ^(x,W) .

Theorem 2.1.6. Let A ∈ Rm×n∗ with singular values σ1 ≥ . . . ≥ σm > 0, and
let x ∈ Rn \ ker(A). Furthermore, let W := im(AT ), and let α := ^(x,W) and
β := ^(x,W⊥) = π

2 − α.

1a. If ∆ ∈ Rm×n is such that x ∈ im(AT + ∆T ), then

‖∆‖ ≥ σm · sinα .

1b. There exists ∆0 ∈ Rm×n such that x ∈ im(AT + ∆T
0 ) and

‖∆0‖ = ‖∆0‖F ≤ σ1 · sinα .

2a. If ∆′ ∈ Rm×n is such that x ∈ ker(A+ ∆′), then

‖∆′‖ ≥ σm · sinβ .

2b. There exists ∆′0 ∈ Rm×n such that x ∈ ker(A+ ∆′0) and

‖∆′0‖ = ‖∆′0‖F ≤ σ1 · sinβ .
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For the proof of this proposition and for the analysis of Renegar’s condition
number in general, it will be crucial to consider matrices whose singular values all
coincide, say whose singular values are all equal to 1. Note that this is equivalent
to the assumption that ‖A‖ = κ(A) = 1 and to the property that the rows of A are
orthonormal vectors in Rn. We denote the set of these matrices by

Rm×n◦ := {A ∈ Rm×n | ‖A‖ = κ(A) = 1} , (2.5)

and we call these matrices balanced.2 Note that for m = n the set of balanced
matrices is the orthogonal group, i.e., Rn×n◦ = O(n).

While the set of rank-deficient matrices is the boundary of Rm×n∗ in Rm×n, the
set of balanced matrices may be thought of as the center of Rm×n∗ . This is specified
by the following proposition.

Proposition 2.1.7. The set of balanced matrices is given by

Rm×n◦ = argmax{d(A,Rm×nrd ) | A ∈ Rm×n , ‖A‖ = 1}

= argmax{d(A,Rm×nrd ) | A ∈ Rm×n , ‖A‖F =
√
m} .

In other words, a matrix A ∈ Rm×n with ‖A‖ = 1 or ‖A‖F =
√
m is balanced

iff it maximizes the distance to Rm×nrd among all matrices with the corresponding
normalization.

Proof. From Theorem 2.1.5 we have d(A,Rm×nrd ) = σm, where ‖A‖ = σ1 ≥ . . . ≥ σm
denote the singular values of A. So for ‖A‖ = 1 we have d(A,Rm×nrd ) = ‖A‖ = 1 iff
A ∈ Rm×n◦ . This implies the first equality.

As for the second equality, note that ‖A‖F =
√
m implies σm ≤ 1. Moreover, for

‖A‖F =
√
m we have σm = 1 iff σm = σm−1 = . . . = σ1 = 1, i.e., iff A ∈ Rm×n◦ . 2

Proposition 2.1.8. Let A ∈ Rm×n∗ have a SVD as in (2.2). Then the set of
balanced matrices, which minimize the Frobenius distance to A, consists of exactly
one element A◦ where

A◦ = Q1 ·

(
1 0 ··· 0

...
...

...
1 0 ··· 0

)
·QT2 . (2.6)

We call A◦ the balanced approximation of A.

Proof. If B ∈ Rm×n◦ then ‖A−B‖F = ‖AT −BT ‖F = ‖ATQ1 −BTQ1‖F , and the
columns of BTQ1, which we denote by w1, . . . , wm, are orthonormal vectors in Rn.
Let v1, . . . , vn denote the columns of Q2, so that the columns of ATQ1 are given by
σ1v1, . . . , σmvm. As

‖σi · vi − wi‖ ≥ |σi − 1|

with equality iff wi = vi (use σi > 0), we get

‖A−B‖2F = ‖ATQ1 −BTQ1‖2F =
m∑
i=1

‖σi · vi − wi‖2 ≥
m∑
i=1

|σi − 1|2

with equality iff the columns of BTQ1 are given by v1, . . . , vm. This proves the
claim. 2

2The set of balanced matrices is also called the Stiefel manifold. We prefer the term ‘balanced
matrix’ at this point because it emphasizes the property of A defining a linear operator.
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The balanced approximation A◦ also appears in the so-called polar decomposition
of a linear operator (cf. [32, §4.2.10]). We describe this in the following proposition.

Proposition 2.1.9. Let A ∈ Rm×n∗ have a SVD as in (2.2). Then there exist
B ∈ Rm×n◦ and a symmetric positive definite matrix S ∈ Rm×m such that

A = S ·B . (2.7)

The matrices S and B are uniquely determined and given by

B = A◦ = (
√
AAT )−1 ·A ,

S = Q1 ·D ·QT1 =
√
AAT ,

with D := diag(σ1, . . . , σm).

Proof. If A has a decomposition as in (2.7), then we have

A ·AT = S B ·BT︸ ︷︷ ︸
=Im

ST︸︷︷︸
=S

= S2 .

This implies S =
√
AAT and B = (

√
AAT )−1 · A. In particular, S and B are

uniquely determined by the decomposition (2.7).
From the singular value decomposition (2.2) of A, we get

A = Q1 ·
(
D 0

)
·QT2 = Q1DQT1︸ ︷︷ ︸

symm. pos. def.

·Q1 ·
(
Im 0

)
·QT2︸ ︷︷ ︸

=A◦∈Rm×n◦

,

which is a decomposition of the form (2.7). From the uniqueness of the decomposi-
tion (2.7) it follows that Q1DQT1 =

√
AAT and A◦ = (

√
AAT )−1 ·A. 2

Remark 2.1.10. Let A ∈ Rm×n∗ and let A = S · A◦ be the polar decomposition
of A as described in Proposition 2.1.9. Then for x ∈ Rn and ∆,∆′ ∈ Rm×n we have

x ∈ im(AT + ∆T ) ⇐⇒ x ∈ im((A◦)T + ∆TS−1) ,

x ∈ ker(A+ ∆′) ⇐⇒ x ∈ ker(A◦ + S−1∆′) .

Another useful property of the balanced approximation A◦ is that it gives an
easy formula for the orthogonal projection onto the image of A. We formulate this
in the following lemma.

Lemma 2.1.11. Let A ∈ Rm×n∗ , and let W := im(AT ). Then the orthogonal
projection ΠW onto W is given by

ΠW = (A◦)TA◦ .

Proof. Let x ∈ Rn be decomposed into x = y + z with y ∈ W and z ∈ W⊥. As
the rows of A◦ form an orthonormal basis of W, we have y = (A◦)T · v for some
v ∈ Rm, and A◦ · z = 0. Therefore, we have

(A◦)TA◦ · x = (A◦)TA◦ · (y + z) = (A◦)TA◦(A◦)T · v + (A◦)TA◦ · z
= (A◦)T · v = y = ΠW(x) . 2
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The following Propositions 2.1.12/2.1.14 cover Theorem 2.1.6 for balanced ma-
trices. Here, and throughout the paper, we denote by Sn−1 the unit sphere in Rn,
i.e.,

Sn−1 = {x ∈ Rn | ‖x‖ = 1} .

Proposition 2.1.12. Let B ∈ Rm×n◦ and let W := im(BT ) the image of BT , or
equivalently ker(B) = W⊥. Furthermore, let x ∈ Rn \ {0}, and let α := ^(x,W)
and β := ^(x,W⊥) = π

2 − α. Then for ∆,∆′ ∈ Rm×n

x ∈ im(BT + ∆T ) ⇒ ‖∆‖ ≥ sinα ,

x ∈ ker(B + ∆′) ⇒ ‖∆′‖ ≥ sinβ .

Proof. If x ∈ im(BT + ∆T ), then there exist v ∈ Sm−1 and r ∈ R such that
(BT + ∆T ) · v = r · x. Then we have

‖∆‖ ≥ ‖∆T · v‖ = ‖ r · x︸︷︷︸
∈lin{x}

− BT · v︸ ︷︷ ︸
∈Sn−1∩W

‖ ≥ sin θ ≥ sinα ,

where θ denotes the angle between x and BT v.
If (B + ∆′) · x = 0, we may compute, using the abbreviation x◦ = ‖x‖−1 · x,

‖∆′‖ ≥ ‖∆′ · x◦‖ = ‖B · x◦‖ = ‖BTB · x◦‖ = cosα = sinβ ,

as BTB is the orthogonal projection onto W. 2

We thus have lower bounds for the norm of perturbations of matrices in Rm×n◦
such that the image resp. the kernel contain some given point. We will show next
that these lower bounds are sharp by constructing perturbations which have the
given Frobenius norms. For the geometric picture it is useful to consider rotations
in Rn. A rotation takes place in a 2-dimensional subspace L of Rn, and leaves the
orthogonal complement L⊥ fixed. For the definition of such a rotation we addition-
ally need a rotational direction, which is defined by a pair of linearly independent
points in L.

Definition 2.1.13. Let L ⊂ Rn a 2-dimensional subspace, and let p, q ∈ L linearly
independent. Then for ρ ∈ R we denote by DL,(p,q)(ρ) the matrix of the linear
operation, which leaves L⊥ fixed and rotates L by an angle of ρ, such that p rotates
towards q. If ‖p‖ = ‖q‖ = 1, pT q = 0, and b1, . . . , bn−2 ∈ L⊥ are chosen such that
the matrix formed by these vectors Q :=

(
p q b1 · · · bn−2

)
∈ O(n), then

DL,(p,q)(ρ) = Q ·


cos ρ − sin ρ
sin ρ cos ρ

1

. . .
1

 ·QT .
Proposition 2.1.14. Let B ∈ Rm×n◦ a balanced matrix with image W := im(BT ),
let x ∈ Rn \ W⊥, ‖x‖ = 1, and let α := ^(x,W). Furthermore, let ∆,∆′ ∈ Rm×n
be defined by

∆ := B · ppT · (xxT − In) , ∆′ := −B · xxT ,

where p ∈ W denotes the normalized projection of x on W, i.e., p := (cosα)−1 ·
BTBx. Then we have rk(∆), rk(∆′) ≤ 1, ‖∆‖F = ‖∆‖ = sinα, ‖∆′‖F = ‖∆′‖ =
cosα, and

x ∈ im(BT + ∆T ) , x ∈ ker(B + ∆′) .
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Figure 2.1: The 2-dimensional situation in L = lin{p, x}.

Additionally, if x 6∈ W ∪W⊥ and W∆ := im(BT + ∆T ), W∆′ := ker(B + ∆′), then

W∆ = DL,(p,x)(α) · W and W∆′ = DL,(x,p)(π2 − α) · W⊥ (2.8)

where L := lin{p, x}.

Proof. First of all, let us assume that Bp = e1 ∈ Rm the first canonical basis vector.
Afterwards, we will deduce the general statement from this special case.

The first row of B is thus given by pT . As pTx = cosα we have Bx = cosα · e1

and
∆ = e1 · (cosα · x− p)T , ∆′ = − cosα · e1 · xT .

Furthermore, we have x ∈ im(BT + ∆T ) as

(BT + ∆T ) · e1 = BTBp+ (cosα · x− p) · eT1 e1 = p+ cosα · x− p
= cosα · x ,

and x ∈ ker(B + ∆′) as

(B + ∆′) · x = Bx− cosα · e1 · xTx = cosα · e1 − cosα · e1

= 0 .

As for the rank, we have rk ∆′ = 1. Moreover, rk ∆ = 1 except for the case x ∈ W,
where α = 0, x = p, and thus rk ∆ = 0. Therefore, the norms of ∆ and ∆′ are given
by (cf. (2.1))

‖∆‖ = ‖∆‖F = sinα , ‖∆′‖ = ‖∆′‖F = cosα .

As for the claim in (2.8), about Wt and W ′t it is readily checked that on the orthog-
onal complement of L = lin{p, x} the linear operators B, B + ∆, and B + ∆′ all
coincide, i.e.,

B|L⊥ = (B + ∆)|L⊥ = (B + ∆′)|L⊥ .

It thus suffices to consider the 2-dimensional situation in L. For convenience, let us
define

δ := cosα · x− p , δ′ = − cosα · x .

Note that ∆ = e1 · δT and ∆′ = e1 · δ′T . See Figure 2.1 for a display of the situation
in L. From this picture it is readily checked that indeed W∆ = DL,(p,x)(α) ·W, and
W∆′ = DL,(x,p)(π2 − α) · W⊥.

To finish the proof it remains to reduce the general case to the case Bp = e1.
Let Q ∈ O(m) such that QBp = e1, and let

B̃ := QB , ∆̃ := Q∆ , ∆̃′ := Q∆′ .
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Note that B̃ + ∆̃ = Q · (B + ∆) and B̃ + ∆̃′ = Q · (B + ∆′). The claims hold if
B,∆,∆′ are replaced by B̃, ∆̃, ∆̃′, as B̃p = e1. But as

im(AT ) = im((QA)T ) , ker(A) = ker(QA) ,

for every A ∈ Rm×n, it is readily checked that the claims also hold for B,∆,∆′. 2

Corollary 2.1.15. Let B ∈ Rm×n◦ and W := im(BT ). Furthermore, let x ∈
Rn \W⊥, i.e., x 6∈ ker(B), and let α := ^(x,W) and β := ^(x,W⊥) = π

2 −α. Then

sinα = min{‖∆‖ | x ∈ im(BT + ∆T )}
= min{‖∆‖F | x ∈ im(BT + ∆T )} ,

sinβ = min{‖∆′‖ | x ∈ ker(B + ∆′)}
= min{‖∆′‖F | x ∈ ker(B + ∆′)} .

If x ∈ W⊥ \ {0}, i.e., 0 6= x ∈ ker(B), then the statement still holds if the first two
min are replaced by inf.

Proof. From Proposition 2.1.12 we get

inf{‖∆‖F | x ∈ im(BT + ∆T )} ≥ inf{‖∆‖ | x ∈ im(BT + ∆T )} ≥ sinα ,

inf{‖∆′‖F | x ∈ ker(B + ∆′)} ≥ inf{‖∆′‖ | x ∈ ker(B + ∆′)} ≥ sinβ .

On the other hand, Proposition 2.1.14 implies that the above inequalities are in fact
equalities, and that the minima are attained. In the case 0 6= x ∈ ker(B) we have
α = π

2 , and min{‖∆′‖ | x ∈ ker(B + ∆′)} = 0 = sinβ. So the second half of the
stamement still holds in this case. As for the first half, i.e., the statement involving
sinα = 1, one can use a simple perturbation argument to show the claim. The
necessity to replace min by inf is easily seen by choosing n = 2 and m = 1. 2

In summary, we have a quite clear picture of how to perturb balanced matrices
such that the defining subspaces contain some given point. We can transfer this to
the unbalanced situation by using the balancing procedure and thus finish the proof
of Theorem 2.1.6.

Proof of Theorem 2.1.6. Let A have a singular value decomposition as in (2.2). In
particular, A = S ·A◦, where S = Q1 · diag(σ1, . . . , σm) ·QT1 (cf. Proposition 2.1.9).
As

(AT + ∆T ) · v = ((A◦)TS + ∆T ) · v = ((A◦)T + ∆TS−1) · (Sv) ,

we get
x ∈ im(AT + ∆T ) ⇐⇒ x ∈ im((A◦)T + ∆TS−1) .

If ∆ is such that these conditions are satisfied, then Proposition 2.1.12 implies

sinα ≤ ‖∆TS−1‖ ≤ σ−1
m · ‖∆‖ .

In Proposition 2.1.14 we have seen that there exists a perturbation ∆1 with x ∈
im((A◦)T + ∆T

1 ) such that ‖∆1‖F = ‖∆1‖ = sinα. Therefore, if we define ∆0 :=
S ·∆1, then we have x ∈ im(AT + ∆T

0 ), and

‖∆0‖F = ‖S ·∆1‖F ≤ σ1 · ‖∆1‖F = σ1 · sinα .

The claim about the kernel follows analogously with the observation

(A+ ∆′) · x = (S ·A◦ + ∆′) · x = 0 ⇐⇒ (A◦ + S−1∆′) · x = 0 . 2
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2.2 The homogeneous convex feasibility problem

In this section we will describe the homogeneous convex feasibility problem and give
the definition of Renegar’s condition number.

Recall from Section 1.2 that the primal and the dual homogeneous convex fea-
sibility problems are given by

∃x ∈ Rn \ {0} , s.t. Ax = 0 , x ∈ C̆ , (P)

∃y ∈ Rm \ {0} , s.t. AT y ∈ C , (D)

where A ∈ Rm×n, m < n, and where the reference cone C ⊂ Rn is a regular cone,
i.e., it is a closed convex cone such that both C and its dual C̆ have nonempty
interior; the dual cone C̆ being defined by

C̆ := {z ∈ Rn | zTx ≤ 0 ∀x ∈ C} .

Note that we have used C̆ for the primal problem (P) and C for the dual prob-
lem (D). But as (C̆ )̆ = C (cf. [47, Cor. 11.7.2]), this choice only has notational
consequences. Recall also that a cone is called self-dual if C̆ = −C. Most of the
cones used in convex programming are self-dual, including the cones used in linear
programming (LP), second-order programming (SOCP), and semidefinite program-
ming (SDP). See (1.1) for a list of the corresponding reference cones.

We may rephrase (P) by

ker(A) ∩ C̆ 6= {0} ,

and, using im(AT ) = ker(A)⊥, we may rephrase (D) by

rk(A) < m or im(AT ) ∩ C 6= {0} .

This paraphrase of (D) already indicates that the set of rank-deficient (m × n)-
matrices Rm×nrd will play a role in the geometric understanding of the homogeneous
convex feasibility problem.

We define the sets of primal/dual feasible instances by

FP(C) := {A ∈ Rm×n | (P) is feasible}
= {A | ker(A) ∩ C̆ 6= {0}},

FD(C) := {A ∈ Rm×n | (D) is feasible}
= Rm×nrd ∪̇ {A | rk(A) = m and im(AT ) ∩ C 6= {0}} .

and accordingly the sets of primal/dual infeasible instances by

IP(C) := Rm×n \ FP(C) = {A ∈ Rm×n | (P) is infeasible}
= {A | ker(A) ∩ C̆ = {0}},

ID(C) := Rm×n \ FD(C) = {A ∈ Rm×n | (D) is infeasible}
= {A | rk(A) = m and im(AT ) ∩ C = {0}} .

To ease the notation we will occasionally simply write FP, FD, IP, ID instead of
FP(C), FD(C), IP(C), ID(C).

Note that if rk(A) = m, then being primal/dual feasible/infeasible only depends
on ker(A) respectively im(AT ) = ker(A)⊥. In particular, A then satisfies the same
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feasibility properties as its balanced approximation A◦, since they define the same
subspaces.

Obviously, we have a certain asymmetry in the sets FP and FD, resp. IP and ID,
which makes the situation a bit unsightly. Nevertheless, the boundaries of all these
sets coincide and form the set of ill-posed inputs, which is the central object in the
context of the condition of the convex feasibility problem. Let us formulate this in
a proposition.

Proposition 2.2.1. The boundaries of FP, FD, IP, ID all coincide and are equal
to FP ∩ FD, i.e.

∂FP = ∂FD = ∂IP = ∂ID = FP ∩ FD .

Before we get to the proof of this proposition, let us give the definition of the
set of ill-posed inputs and of the Renegar condition.

Definition 2.2.2. The set of ill-posed inputs is defined by

Σ(C) := FP(C) ∩ FD(C)
= ∂FP = ∂FD = ∂IP = ∂ID .

This leads us to the definition of the object we aim to understand. Recall that
d(A,B) = ‖A − B‖ for A,B ∈ Rm×n, and d(A,M) = inf{d(A,B) | B ∈ M}, for
M⊆ Rm×n.

Definition 2.2.3. Renegar’s condition number is defined by

CR : Rm×n \ {0} → (0,∞] , CR(A) :=
‖A‖

d(A,Σ(C))
.

Remark 2.2.4. 1. In Section 2.3 (cf. Remark 2.3.5) we will see that CR(A) ≥ 1
for every A ∈ Rm×n \ {0}.

2. In Corollary 2.2.6 and Proposition 2.2.7 we will see that FP ∪ FD = Rm×n,
where FP and FD are closed subsets of Rm×n. Knowing this, we could have
avoided the definition of Σ = FP ∩ FD, as

d(A,Σ) =

{
d(A,FD) if A ∈ FP

d(A,FP) if A ∈ FD
, (2.9)

but the recognition of Σ as the central object is of fundamental importance
for the understanding of the behavior of the condition. It is for this reason
that we prefer the above definition of Renegar’s condition number.

3. Another characterization, which is actually the original definition, is given by

CR(A)−1 = max
{
r

∣∣∣∣‖∆‖ ≤ r · ‖A‖ ⇒ (
A+ ∆ ∈ FP if A ∈ FP

A+ ∆ ∈ FD if A ∈ FD

)}
.

The verification of the equivalence is left to the reader.

In the remainder of this section we will give a proof of Proposition 2.2.1. The
main step is the following well-known theorem of alternatives.
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feasible infeasible

(P) ker(A) ∩ C̆ 6= {0} im(AT ) ∩ int(C) 6= ∅

(D)
rk(A) < m or

im(AT ) ∩ C 6= {0}
rk(A) = m and

ker(A) ∩ int(C̆) 6= ∅

Table 2.1: Overview of the characterizations of FP, IP,FD, ID.

Theorem 2.2.5. Let C ⊂ Rn be a closed convex cone with int(C) 6= ∅, and let
W ⊆ Rn a linear subspace. Then

W ∩ int(C) = ∅ ⇐⇒ W⊥ ∩ C̆ 6= {0} . (2.10)

In other words,

either W ∩ int(C) 6= ∅ or W⊥ ∩ C̆ 6= {0} .

Proof. We first show the ‘⇐’-direction via contraposition. Let x ∈ W ∩ int(C)
and v ∈ W⊥ ∩ C̆, so that we need to show v = 0. For ε > 0 small enough we
have x + εv ∈ C, as x ∈ int(C). Now, we have 〈x + εv, v〉 ≤ 0 as v ∈ C̆, and
〈x + εv, v〉 = 〈x, v〉 + ε〈v, v〉 = ε‖v‖2 ≥ 0 as x ∈ W and v ∈ W⊥. This implies
‖v‖ = 0 and thus v = 0.

To show the ‘⇒’-direction, let W ∩ int(C) = ∅. Let Π: Rn → W⊥ denote
the orthogonal projection onto W⊥. If we have shown that Π(C) 6= W⊥, then it
follows that there exists v ∈ W⊥ \ {0} such that 〈v, x̄〉 ≤ 0 for all x̄ ∈ Π(C) (cf. for
example [47, 11.7.3]). Since 〈x, v〉 = 〈Π(x), v〉 ≤ 0 for all x ∈ C, it follows that
v ∈ C̆, and thus W⊥ ∩ C̆ 6= {0}.

It remains to show that Π(C) 6= W⊥. To do this indirectly, we assume that
Π(C) = W⊥. Let x ∈ int(C), and let y ∈ C such that Π(y) = −Π(x), which
exists by the assumption Π(C) = W⊥. As x ∈ int(C) and y ∈ C it follows that
z := x+ y ∈ int(C). Additionally, Π(z) = Π(x+ y) = Π(x) + Π(y) = 0, i.e., z ∈ W.
So we have z ∈ int(C) ∩W, which contradicts the assumption W ∩ int(C) = ∅ and
thus finishes the proof. 2

As a direct corollary, we get a new characterization of the infeasible instances.

Corollary 2.2.6. The primal/dual infeasible instances are given by

IP(C) =
{
A | im(AT ) ∩ int(C) 6= ∅

}
⊂ FD(C) ,

ID(C) =
{
A | rk(A) = m and ker(A) ∩ int(C̆) 6= ∅

}
⊂ FP(C) .

In particular, we have FP(C) ∪ FD(C) = Rm×n.

Proof. This is an immediate consequence of Theorem 2.2.5. 2

See Table 2.1 for an overview of the different characterizations. Another impor-
tant property of FP(C) and FD(C) is that they are both closed. Let us formulate
this as a proposition.
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Proposition 2.2.7. The sets FP(C) and FD(C) are closed subsets of Rm×n.

Proof. Let Ak ∈ FP, k = 1, 2, . . ., be a sequence converging to limk Ak =: A. As all
the Ak are primal feasible we may choose for every k a point pk ∈ ker(Ak)∩C̆∩Sn−1.
By Bolzano-Weierstrass there exists a converging subsequence pki , and we denote
its limit by limi pki =: p. As Sn−1 and C̆ are closed sets we have p ∈ C̆ ∩ Sn−1.
Furthermore, we have

A · p = (lim
i
Aki) · (lim

i
pki) = lim

i
Aki · pki︸ ︷︷ ︸

=0

= 0 ,

which shows that p ∈ ker(A). So we have A ∈ FP, and therefore FP is closed.
For the dual case we first note that we can write

Rm×nrd =
⋂

I∈([n]
m)
{A ∈ Rm×n | det(AI) = 0} ,

where [n] = {1, . . . , n},
(

[n]
m

)
= {I ⊆ [n] | |I| = m}, and

AI :=

( a1,i1 ··· a1,im

...
...

am,i1 ··· am,im

)
,

for I = {i1, . . . , im} with i1 < . . . < im. For every I ∈
(

[n]
m

)
the set {A ∈ Rm×n |

det(AI) = 0} is closed, and thus Rm×nrd is closed. Let us denote the other part of
FD by

FD
◦ := {A | rk(A) = m and im(AT ) ∩ C 6= {0}} .

Let Bk ∈ FD, k = 1, 2, . . ., be a sequence converging to limk Bk =: B. We need
to show that B ∈ FD. As Rm×nrd ⊂ FD we may assume that rk(B) = m, and
by omitting at most finitely many Bk we may assume w.l.o.g. that rk(Bk) = m,
i.e., Bk ∈ FD

◦ , for all k. As in the primal case we find points qk ∈ im(BTk )∩C∩Sn−1,
and by Bolzano-Weierstrass there exists a converging subsequence qki with limit
limi qki =: q. It remains to show that q ∈ im(BT ). Here the condition that B has
full rank will play a decisive role.

To ease the notation, let us replace (qk) by the converging subsequence (qki),
and accordingly replace the sequence (Bk) by the corresponding subsequence (Bki).
Each qk has a unique expression as

qk =
m∑
j=1

rk,j · vk,j , rkj ∈ R ,

where vk,1, . . . , vk,m denote the columns of BTk . The columns of BT shall be denoted
by v1, . . . , vm, so that limk vk,j = vj for j = 1, . . . ,m, and

q = lim
k
qk = lim

k

( m∑
j=1

rk,j · vk,j
)

=
m∑
j=1

lim
k

(rk,j · vk,j) .

So all that remains to show is the existence of the limits limk(rk,j), j = 1, . . . ,m.
Because then we have limk(rk,j · vk,j) = limk(rk,j) · limk(vk,j) and it follows that
q lies in the image of BT . Let I ∈

(
[n]
m

)
, I = {i1, . . . , im}, i1 < . . . < im, such

that det((BT )I) 6= 0. Again, by omitting at most finitely many Bk we may assume
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w.l.o.g. that det((BTk )I) 6= 0 for all k. With Mk := (BTk )I , q̃k := (qk,i1 , . . . , qk,im)T ,
and rk := (rk,1, . . . , rk,m)T we get

rk = M−1
k · q̃k .

As the limits of both factors on the right-hand side exist, so does the limit of the
left-hand side, which finishes the proof. 2

Proposition 2.2.8. The closure of IP resp. ID is given by FD resp. FP, i.e.

IP = FD , ID = FP .

Proof. As FP and FD are both closed, and as IP ⊂ FD and ID ⊂ FP, it suffices to
show the following properties.

1. For all A ∈ FD and for all ε > 0 there exists B ∈ IP such that ‖A−B‖ ≤ ε.

2. For all A ∈ FP and for all ε > 0 there exists B ∈ ID such that ‖A−B‖ ≤ ε.

For the first claim, let A ∈ FD. We distinguish the cases im(AT ) ∩ C 6= {0}
and rk(A) < m. If im(AT ) ∩ C 6= {0}, then it is geometrically clear that there
exist arbitrarily small perturbations B of A such that im(BT ) ∩ int(C) 6= ∅. If
im(AT ) ∩ C = {0} and rk(A) < m, then this may be not so clear. So let rk(A) <
m, ε > 0, let v1, . . . , vm denote the columns of AT , and w.l.o.g. we may assume
vm ∈ lin{v1, . . . , vm−1}. Furthermore, let w ∈ int(C), d := ‖w − vm‖ > 0 (as
im(AT ) ∩ C = {0}) and ∆vm := d−1 · (w − vm), and let

v′m := vm + ε ·∆vm =
(

1− ε

d

)
· vm +

ε

d
· w .

We define the perturbation B ∈ Rm×n via BT :=
(
v1 · · · vm−1 v′m

)
. Then we

have
‖A−B‖ = ‖ε ·∆vm‖ = ε ,

and
w =

(
1− d

ε

)
· vm +

d

ε
· v′m ∈ im(BT ) ,

which shows that B ∈ IP, and thus finishes the proof of the first claim.
For the second claim let A ∈ FP, i.e., ker(A) ∩ C̆ 6= {0}. Recall our gen-

eral assumption m < n, as we will need it here. If A has full rank, then every
small enough perturbation of A has full rank, and the same geometric evidence as
noted before shows that there exist arbitrarily small perturbations B of A such that
rk(B) = m and ker(B)∩int C̆ 6= ∅. Again, the case rk(A) < m requires further argu-
ments. Let v1, . . . , vm denote the columns of AT , and w.l.o.g. we may assume vm ∈
lin{v1, . . . , vm−1}. Let w ∈ (kerA ∩ C̆), w 6= 0, and let ∆vm ∈ w⊥ ∩ kerA ∩ Sn−1.
Denoting v′m := vm + ε ·∆vm and BT :=

(
v1 · · · vm−1 v′m

)
, we get

‖A−B‖ = ‖ε ·∆vm‖ = ε ,

kerB = kerA ∩ (∆vm)⊥. In particular w ∈ kerB. So we have B ∈ FP and
rk(B) = rk(A) + 1. Repeating this argument if necessary we arrive at the full-rank
case, which we have already discussed. 2

Proof of Proposition 2.2.1. Follows from Proposition 2.2.7 and Proposition 2.2.8 by
the fact that ∂M =M∩Mc for every subsetM of a topological space, whereMc

denotes the complement of M. 2
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2.2.1 Intrinsic vs. extrinsic condition

In the last section we have explicitly computed several characterizations of the
sets of primal/dual feasible/infeasible instances, and in particular of the set of ill-
posed inputs. A quick look at these sets already reveals, that a part of the set of
rank-deficient matrices is contained in Σ. In this section we will elaborate on this
interference by the matrix condition, in particular by considering some concrete
low-dimensional examples.

Broadly speaking, if a matrix A has a large condition CR(A) then this may have
two reasons:

1. The subspace defined by A may intersect/miss the reference cone close to the
boundary, or

2. the linear operator defined by A may itself be badly conditioned.

Moreover, these two effects interfere and thus make a direct analysis of Renegar’s
condition hard. To emphasize the different natures of these effects, we call the
condition of the operator A the extrinsic condition and the condition indicated in
1. the intrinsic condition. In the next section we will specify the notion of intrinsic
condition by introducing a new condition number. Note that it should be plausible
that one can get rid of the extrinsic condition by using a preconditioner that repairs
the bad condition of the linear operator. The intrinsic condition on the other hand
is truly at the heart of the conditioning problem and thus captures the essential
part of the Renegar condition.

The inverse of the matrix condition κ(A)−1 has a nice geometric interpreta-
tion: It is given by the maximal radius of a closed ball around the origin that
lies completely in the image of the unit ball in Rn under the normalized operator
A(1) := ‖A‖−1 ·A, i.e.,

κ(A)−1 = max{r | r ·Bm ⊆ A(1)(Bn)} ,

where Bm denotes the closed unit ball in Rm (cf. Proposition 2.1.3). A beautiful
characteristic of Renegar’s condition number is that in the case ker(A) ∩ C̆ 6= {0},
i.e., in the primal feasible case, it has a similar description. The only difference is
that the unit ball Bn is replaced by the intersection of the unit ball with (the dual
of) the reference cone C̆, i.e., we have

CR(A)−1 = max{r | r ·Bm ⊆ A(1)(Bn ∩ C̆)} . (2.11)

(See [45] or [42, Cor. 3.6].) We will use this characterization in the following example.
Let us anticipate the definition of the intrinsic condition, that we will give in the

next section, and define

CG(A) := CR(A◦) ,

where A◦ denotes the balanced approximation of A as defined in (2.6). To get a
picture of these quantities let us specialize to the case n = 3, m = 2, C̆ = R3

+,
and A being one of three primal feasible matrices A1, A2, A3, that are specified in
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(a) A1 (b) A2 (c) A3

Figure 2.2: The singular vectors of A1, A2, A3 and the positive orthant.

the following list along with their different conditions.

κ CG CR κ · CG

A1 :=
(
−1 3 −2
−1 −1 2

)
2.5 1.7 4.3 4.3

A2 :=
(

5 4 −9
−1 1 1

)
7.5 4.1 28.0 31

A3 :=
(
−1 9 −1
−1 1 9

)
1.0 10.4 10.4 10.4

The locations of the singular vectors of A1, A2, A3 with respect to the positive
orthant are shown in Figure 2.2. In these pictures the blue arrow spans the kernel
of the respective operator. Figure 2.3 shows the images of the singular vectors of
the normalized operators A(1)

1 , A
(1)
2 , A

(1)
3 as well as the images of the unit sphere

and the positive orthant intersected with the unit sphere. It also shows the images
of these objects under the balanced operators A◦1, A

◦
2, A

◦
3.

The first matrix A1 has a kernel that hits the reference cone exactly in the center,
i.e., the intrinsic condition is best possible. The Renegar condition on the other hand
is not as good as it could be due to the non-optimality of the matrix condition. The
second matrix has a slightly worse intrinsic condition as the solution set lies closer
to the boundary of the reference cone. But the extrinsic/matrix condition is very
bad so that the Renegar condition is totally dominated by this effect. The third
matrix is nearly balanced but its intrinsic condition is the worst compared to the
other two. Finally, note that the product κ(A) · CG(A) gives an upper bound for
CR(A). This holds in general as we will see in the next section.

2.3 Defining the Grassmann condition

In this section we will define the Grassmann condition and give several equivalent
characterizations corresponding to the three viewpoints on the homogeneous convex
feasibility problem that we described in Section 1.5. We will also establish the
relationship between the Renegar and the Grassmann condition that we already
announced in Section 1.2.
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(a) A
(1)
1 (b) A

(1)
2 (c) A

(1)
3

(d) A◦1 (e) A◦2 (f) A◦3

Figure 2.3: The images under A(1)
1 , A

(1)
2 , A

(1)
3 and A◦1, A

◦
2, A

◦
3.

Definition 2.3.1. Let C ⊂ Rn be a regular cone, and let 1 ≤ m ≤ n − 1. The
Grassmann condition is defined by

CG : Rm×n \ {0} → (0,∞] , CG(A) :=

{
CR(A◦) if rk(A) = m

1 if rk(A) < m ,

where A◦ denotes the balanced approximation of A (cf. Proposition 2.1.8/2.1.9).

Before we state the next proposition recall that for A ∈ Rm×n∗ , i.e., rk(A) = m,
and for W := im(AT ), we have

A ∈ FP ⇐⇒ W⊥ ∩ C̆ 6= {0} ⇐⇒ W ∩ int(C) = ∅
A ∈ IP ⇐⇒ W⊥ ∩ C̆ = {0} ⇐⇒ W ∩ int(C) 6= ∅
A ∈ FD ⇐⇒ W ∩ C 6= {0} ⇐⇒ W⊥ ∩ int(C̆) = ∅
A ∈ ID ⇐⇒ W ∩ C = {0} ⇐⇒ W⊥ ∩ int(C̆) 6= ∅ ,

(2.12)

and Σ = FP ∩ FD.

Proposition 2.3.2. Let C ⊂ Rn be a regular cone, 1 ≤ m ≤ n − 1, and let
A ∈ Rm×n∗ and W := im(AT ).

1. Denoting by ^(x,W) the angle between x ∈ Rn \ {0} and W (cf. (2.4)), let

α := min{^(x,W) | x ∈ C \ {0}} , if A ∈ FP ,

β := min
{
^(v,W⊥) | v ∈ C̆ \ {0}

}
, if A ∈ FD .

(2.13)
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Then

CG(A) =

{
1

sinα if A ∈ FP ,

1
sin β if A ∈ FD .

(2.14)

2. Let ΠW ,ΠW⊥ denote the orthogonal projections onto W resp. W⊥, and let

rmax :=

{
max{r | r ·Bn ∩W ⊆ ΠW(C̆ ∩Bn)} if A ∈ FP ,

max{r | r ·Bn ∩W⊥ ⊆ ΠW⊥(C ∩Bn)}} if A ∈ FD ,

where Bn denotes the unit ball in Rn. Then

CG(A) =
1

rmax
.

Note that from the above proposition it follows that CG(A) in fact only depends
on the subspace W = im(AT ) resp. W⊥ = ker(A).

Remark 2.3.3. The Grassmann condition as characterized in (2.14) was considered
in [5] in the dual feasible case. Also the inequalities in Theorem 2.3.4 relating the
Grassmann to the Renegar condition was given there.

Proof of Proposition 2.3.2. (1) By definition of Renegar’s condition number, we
have

CG(A)−1 = CR(A◦)−1 = d(A◦,Σ(C)) ,

as ‖A◦‖ = 1. If A ∈ FP, then d(A◦,Σ) = d(A◦,FD) (cf. (2.9) in Remark 2.2.4), and
thus

d(A◦,Σ) = min
{
‖∆‖ | im

(
(A◦)T + ∆T

)
∩ C 6= {0} or A◦ + ∆ ∈ Rm×nrd

}
= min

{
min

{
‖∆‖ | im

(
(A◦)T + ∆T

)
∩ C 6= {0}

}
, d(A◦,Rm×nrd )

}
.

Note that d(A◦,Rm×nrd ) = 1, as A◦ ∈ Rm×n◦ (cf. Theorem 2.1.5). By Corollary 2.1.15
we have for x ∈ Rn \W⊥ and ρ := ^(x,W)

min
{
‖∆‖ | x ∈ im

(
(A◦)T + ∆T

)}
= sin ρ ,

which also holds for x ∈ W⊥ \ {0}, if min is replaced by inf. As int(C) 6= ∅ we
have C 6⊆ W⊥, which implies α < π

2 . So if x ∈ C \ {0} is such that the angle
^(x,W) is minimal, i.e., ^(x,W) = α, then x 6∈ W⊥ and there exists ∆0 ∈ Rm×n
such that x ∈ im

(
(A◦)T + ∆T

0

)
. On the other hand, any perturbation ∆ such that

im
(
(A◦)T + ∆T

)
∩ C 6= {0} must have a norm of at least sinα, so that we may

conclude
min

{
‖∆‖ | im

(
(A◦)T + ∆T

)
∩ C 6= {0}

}
= sinα .

Altogether, we get
d(A◦,Σ) = min{sinα, 1} = sinα .

This shows (2.14) in the case A ∈ FP.
In the case A ∈ FD we may argue analogously using d(A◦,Σ) = d(A◦,FP),

which implies by Corollary 2.1.15

d(A◦,Σ) = min
{
‖∆′‖ | ker (A◦ + ∆′) ∩ C̆ 6= {0}

}
= sinβ .



2.3 Defining the Grassmann condition 31

(2) It remains to show sinα = rmax resp. sinβ = rmax. By duality, we may
assume w.l.o.g. that A ∈ FP. From the characterization of the Renegar condition
stated in (2.11) we get

sinα = CG(A)−1 = CR(A◦)−1

(2.11)
= max{r | r ·Bm ⊆ A◦(Bn ∩ C̆)}

= max
{
r | r · (A◦)T (Bm) ⊆ (A◦)TA◦(Bn ∩ C̆)

}
,

where the last equality follows from the fact that the map (A◦)T : Rm → Rn is a
norm-preserving map. Using Lemma 2.1.11 we may continue

= max
{
r | r ·Bn ∩W ⊆ ΠW(Bn ∩ C̆)

}
= rmax .

This finishes the proof. 2

Theorem 2.3.4. Let A ∈ Rm×n \ {0}. Then

CG(A) ≤ CR(A) ≤ κ(A) · CG(A) . (2.15)

Remark 2.3.5. Note that as a simple corollary we get CR(A) ≥ 1 for all A ∈
Rm×n \ {0}, as CR(A) ≥ CG(A) and CG(A) ≥ 1 by the characterization (2.14).

Proof of Theorem 2.3.4. If rk(A) < m, then CG(A) = 1 and κ(A) = ∞, and the
claim holds trivially. In the following we may thus assume that rk(A) = m.

IfA ∈ FP, then d(A,Σ) = d(A,FD) (cf. Remark 2.2.4). From Theorem 2.1.6 (1a,b)
we get as in the proof of Proposition 2.3.2

σm · sinα ≤ d(A,Σ) ≤ σ1 · sinα ,

where σ1 ≥ . . . ≥ σm denote the singular values of A, and α denotes the minimum
angle between C and im(AT ) as defined in (2.13). By Proposition 2.3.2 we have
CG(A) = 1

sinα , and so we get

CR(A) =
σ1

d(A,Σ)
≤ σ1

σm
· 1

sinα
= κ(A) · CG(A) ,

CR(A) =
σ1

d(A,Σ)
≥ 1

sinα
= CG(A) .

The case A ∈ FD follows analogously. 2

In the remainder of this section we will describe another characterization of the
Grassmann condition corresponding to the third viewpoint on the homogeneous
convex feasibility problem. This characterization is also the reason for the name
‘Grassmann condition’.

For 0 ≤ m ≤ n the (n,m)th Grassmann manifold Grn,m is defined as the set of
m-dimensional linear subspaces of Rn

Grn,m := {W ⊆ Rn | W lin. subspace , dim(W) = m} .

Note that by intersecting each element in Grn,m with the unit sphere Sn−1, we
can identify the Grassmann manifold Grn,m with the set of (m − 1)-dimensional
subspheres of Sn−1. In Section 3.2 we will see that this set is endowed with a
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metric dH, the Hausdorff metric, and forms a complete metric space. We use the
same symbol dH to denote the corresponding metric in Grn,m.

Another metric on Grn,m is given by the geodesic metric, which we denote by dg.
This metric comes from the fact that Grn,m is a complete Riemannian manifold. In
Section 5.3.2 and Section 5.4 we will have a closer look at this. In particular, we
will prove the following well-known facts:

• The Hausdorff and the geodesic metric on Grn,m are equivalent. In particular,
we only have one topology on Grn,m that we work with.

• We have dH(W1,W2) ≤ π
2 for all W1,W2 ∈ Grn,m.

• The map
Grn,m → Grn,n−m , W 7→ W⊥

is an isometry with respect to the Hausdorff metric on Grn,m and on Grn,n−m,
and with respect to the geodesic metric on Grn,m and Grn,n−m.

• The surjective maps

I : Rm×n∗ → Grn,m , A 7→ imAT ,

K : R(n−m)×n
∗ → Grn,m , A′ 7→ kerA′ .

are continuous, open, and closed, with respect to the relative topology on
Rm×n∗ respectively R(n−m)×n

∗ (cf. Remark 5.3.6).

In this section we may use this fact as the definition of the topology on Grn,m,
i.e., the topology on Grn,m is given as as the pushforward of the topology on
Rm×n∗ resp. R(n−m)×n

∗ via I resp. K.

We define the primal and dual Grassmann feasibility problems by

W⊥ ∩ C̆ 6= {0} , (GrP)

W ∩ C 6= {0} , (GrD)

where W ∈ Grn,m, 1 ≤ m ≤ n − 1, and where the reference cone C ⊂ Rn is a
regular cone. Notice the full duality of these problems, i.e., there is no structural
difference between (GrP) and (GrD). Additionally, the connection between the
primal and the dual is given by the isometry W 7→ W⊥ (and the local isometry
C 7→ C̆; cf. Section 3.2).

We define the sets of primal/dual feasible/infeasible instances, with respect
to (GrP) and (GrD), by

FP
G := {W ∈ Grn,m | (GrP) is feasible} ,

IP
G := {W ∈ Grn,m | (GrP) is infeasible} ,

FD
G := {W ∈ Grn,m | (GrD) is feasible} ,

ID
G := {W ∈ Grn,m | (GrD) is infeasible} .

The relations between these sets are simpler than the relations between FP, IP, FD,
and ID. We describe them in the following proposition.
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Proposition 2.3.6. Let C ⊂ Rn a regular cone, and let 1 ≤ m ≤ n− 1. Then the
sets FP

G and FD
G are closed, IP

G and ID
G are open, and

FP
G = ID

G , FD
G = IP

G , IP
G = int(FD

G ) , ID
G = int(FP

G) . (2.16)

Furthermore, the intersection FP
G ∩ FD

G consists of those m-dimensional subspaces,
which touch the cone C in the boundary ∂C

FP
G ∩ FD

G = {W ∈ Grn,m | W ∩ int(C) = ∅ and W ∩ ∂C 6= {0}} .

Proof. If we intersect the sets FP, IP, FD, and ID with the set of full-rank (m×n)-
matrices, then we get a characterization as stated in (2.12). From this characteriza-
tion it is seen that the sets FP

G, FD
G , IP

G, ID
G , are the images of the above intersections

under the map I, i.e.,

FP
G = I(FP ∩ Rm×n∗ ) , FD

G = I(FP ∩ Rm×n∗ ) ,

IP
G = I(IP ∩ Rm×n∗ ) , ID

G = I(IP ∩ Rm×n∗ ) .

We have seen in Section 2.2 that FP and FD are closed, and IP and ID are open. By
definition of the relative topology, the same holds for the intersections with Rm×n∗ .
As the map I is both closed and open, we also have that FP

G and FD
G are closed, and

IP
G and ID

G are open. Analogously, we have the relations stated in (2.16).
Concerning the statement about the intersection FP

G∩FD
G , we have for A ∈ Rm×n∗ ,

W = I(A) = im(AT ),

A ∈ Σ = FP ∩ FD (2.16)⇐⇒ W ∩ int(C) = ∅ and W ∩ C 6= {0}
⇐⇒ W ∩ int(C) = ∅ and W ∩ ∂C 6= {0} ,

which finishes the proof. 2

Definition 2.3.7. For C ⊂ Rn a regular cone, and 1 ≤ m ≤ n− 1 we define

Σm(C) := FP
G ∩ FD

G

= {W ∈ Grn,m | W ∩ int(C) = ∅ and W ∩ ∂C 6= {0}} .

The following proposition provides the namesake characterization of the Grass-
mann condition.

Proposition 2.3.8. Let C ⊂ Rn a regular cone, 1 ≤ m ≤ n− 1, and let A ∈ Rm×n∗
and W := im(AT ) ∈ Grn,m. Then

CG(A) =
1

sin dH(W,Σm(C))
=

1
sin dg(W,Σm(C))

,

where dH denotes the Hausdorff distance and dg denotes the geodesic distance in Grn,m.

Proof. We will show this in Chapter 5 (cf. Corollary 5.5.3). 2
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Chapter 3

Spherical convex geometry

This chapter is devoted to aspects of spherical convex geometry, that we will need
for the analysis of the Grassmann condition. The goal of this chapter is to set
up the notation for the treatment of convex sets in the sphere, and to describe a
broad picture of the characteristics of spherical convex geometry. We include this
chapter as we could not find a single source on spherical geometry that covered all
the material we need. All what is stated in this chapter is well-known, but for the
sake of completeness we provide proofs for most of the statements.

3.1 Some basic definitions

From now on we will denote the euclidean distance in Rn by

de : Rn × Rn → R , de(x, y) = ‖x− y‖ ,

and we will denote by

d : Sn−1 × Sn−1 → R , d(p, q) = arccos(〈p, q〉)

the spherical distance, i.e., the angle between the points p and q. Recall that a
set Ke ⊆ Rn is called convex iff for all x, y ∈ Ke the line segment between x and
y is contained in Ke. Analogously, a subset K ⊆ Sn−1 is called convex iff for all
p, q ∈ K with q 6= ±p the (unique geodesic) arc between p and q, which we denote
by geod(p, q), is contained in K. This is equivalent to the condition that the set

cone(K) := {λ · p | λ ≥ 0 , p ∈ K} ⊆ Rn

is convex.

Definition 3.1.1. The set of nonempty compact convex sets in euclidean space

K(Rn) := {Ke ⊆ Rn | Ke nonempty compact convex}

is called the set of convex bodies in Rn. In the unit sphere we call a set spherical
convex, if it is closed, convex, and neither the empty set nor the whole sphere

K(Sn−1) := {K ⊆ Sn−1 | K closed and convex, K 6= ∅, and K 6= Sn−1} .

(We exclude the empty set and the whole sphere to avoid pointless case distinctions.)

35
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One of the most important aspects in spherical convex geometry is duality. Recall
that if C ⊆ Rn is a convex cone, then its dual is defined via

C̆ = {v ∈ Rn | 〈v, x〉 ≤ 0 ∀x ∈ C} .

For K ∈ K(Sn−1), and C := cone(K), we may therefore define

K̆ := C̆ ∩ Sn−1 .

We call a cone/spherical convex set self-dual, if C̆ = −C resp. K̆ = −K.

Remark 3.1.2. 1. The duality map is an involution on the set of spherical con-
vex sets, i.e., (K̆ )̆ = K for all K ∈ K(Sn−1).

2. We may give an intrinsic characterization of the dual via K̆ = {v ∈ Sn−1 |
d(K, v) ≥ π

2 }, where d(K, v) := min{d(p, v) | p ∈ K}.

3. The boundary of K̆ is given by ∂K̆ = {v ∈ Sn−1 | d(K, v) = π
2 }.

In euclidean space every closed convex set admits a (global) projection map,
i.e., a map which sends a point x ∈ Rn to the uniquely determined point in the
convex set, which minimizes the distance to x. However, in the sphere a projection
map onto a spherical convex set K ∈ K(Sn−1) is in general only defined outside its
dual K̆. We will see this after we have defined the normal cone and determined the
normal cones of a closed convex cone.

Definition 3.1.3. Let Ke ⊆ Rn be a closed convex set (not necessarily compact),
and let ΠKe denote the projection map onto Ke. The normal cone of Ke at x ∈ Ke

is defined as

Nx(Ke) := {v ∈ Rn | ΠKe(x+ v) = x} .

We furthermore define NS
x (Ke) := Nx(Ke) ∩ Sn−1. For a spherical convex set

K ∈ K(Sn−1) and C := cone(K) we define for p ∈ K

Np(K) := Np(C) and NS
p (K) := Np(K) ∩ Sn−1 .

Remark 3.1.4. 1. As the term ‘normal cone’ suggests, Nx(Ke) is indeed a
closed convex cone.

2. From the definition of the projection map it is readily seen that Nx(Ke) = {0}
iff x ∈ int(Ke), or equivalently Nx(Ke) 6= {0} iff x ∈ ∂Ke. In other words,
the normal cone is nontrivial only on the boundary of the convex set.

3. From the fact that ΠKe is a (global) map it follows that Rn has a disjoint
decomposition into Rn =

⋃̇
x∈Ke(x+Nx(Ke)).

Proposition 3.1.5. Let C ⊆ Rn be a closed convex cone, and let x ∈ C. Then

Nx(C) = x⊥ ∩ C̆ , (3.1)

where x⊥ = {y ∈ Rn | 〈x, y〉 = 0}. In particular, N0(C) = C̆.
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Proof. Let v ∈ x⊥ ∩ C̆, i.e., 〈v, x〉 = 0 and 〈v, y〉 ≤ 0 for all y ∈ C. Therefore, we
have for y ∈ C \ {x}

‖y − (x+ v)‖2 = ‖y‖2 − 2〈y, x+ v〉+ ‖x+ v‖2

= ‖y‖2 − 2〈y, x〉 − 2〈y, v〉+ ‖x‖2 + ‖v‖2

= ‖x− y‖2 + ‖v‖2 − 2〈y, v〉
> ‖x− (x+ v)‖2 .

This shows that ΠC(x+ v) = x, and thus x⊥ ∩ C̆ ⊆ Nx(C).
For the other inclusion let v ∈ Nx(C). In order to show 〈x, v〉 = 0 we may

assume x 6= 0. For 1 ≥ λ > 0 or 0 > λ we have

‖v‖2 = ‖x− (x+ v)‖2 < ‖(1− λ) · x− (x+ v)‖2 = ‖λx+ v‖2

= λ2‖x‖2 + 2λ〈x, v〉+ ‖v‖2 ,

or equivalently 〈x, v〉 > −λ2 ·‖x‖
2. This implies 〈x, v〉 = 0, as λ may be both positive

or negative arbitrarily small.
In order to show v ∈ C̆, let y ∈ C \ {x} and 1 ≥ λ > 0. We get

‖v‖2 = ‖x− (x+ v)‖2 ≤ ‖x+ λ(y − x)− (x+ v)‖2 = ‖λ(y − x)− v‖2

= λ2‖y − x‖2 − 2λ〈y − x, v〉+ ‖v‖2

= λ2‖y − x‖2 − 2λ〈y, v〉+ ‖v‖2 ,

or equivalently 〈y, v〉 ≤ λ
2 · ‖y − x‖

2. Since this holds for all 1 ≥ λ > 0, we get
〈y, v〉 ≤ 0, and therefore v ∈ C̆. This finishes the proof. 2

We may now define the projection map for spherical convex sets. For K ∈
K(Sn−1) and C := cone(K) let

ΠK : Sn−1 \ K̆ → K , ΠK(p) := ‖ΠC(p)‖−1 ·ΠC(p) , (3.2)

where ΠC : Rn → C denotes the projection map onto C. This map is well-defined,
as ΠC(x) = 0 iff x ∈ C̆ by Proposition 3.1.5. Moreover, ΠK is indeed the projection
map onto K, which is shown in the following lemma.

Lemma 3.1.6. Let K ∈ K(Sn−1), and let ΠK : Sn−1\K̆ → K be defined as in (3.2).
Then for p ∈ Sn−1 \ K̆

argmin d(p,K) = {ΠK(p)} .

Proof. Recall that K̆ = {v ∈ Sn−1 | d(K, v) ≥ π
2 }. So we have Sn−1 \ K̆ = {p ∈

Sn−1 | d(K, p) < π
2 }. Furthermore, for 0 ≤ α < π

2 we have d(p, q) = α ⇐⇒
de(p, y) = sinα with y = cos(α) · q resp. q = cos(α)−1 · y. As the sine func-
tion is strictly monotone increasing on [0, π2 ) and the cosine function is positive
on [0, π2 ), the claim now follows from the uniqueness of the projection on the cone
C = cone(K). 2

From 3-dimensional examples it is seen that points in K̆ may very well have
several closest points in K. So the limitation of the domain of ΠK is essential.

The notion of the normal cone at a point of the convex set can be extended to
faces that we define next.
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Definition 3.1.7. Let Ke ⊆ Rn be a closed convex set. An affine hyperplane
H ⊂ Rn is called a supporting (affine) hyperplane, if H ∩ Ke 6= ∅ and Ke lies
completely in one of the two closed half-spaces defined by H. A subset F e ⊆ Ke is
called an (exposed) face of Ke, if F e = Ke∩H, where H is a supporting hyperplane
of Ke.

For a spherical convex set K ∈ K(Sn−1) we call a subset F ⊆ K a face of K, if
cone(F ) is a face of cone(K).

Remark 3.1.8. One usually distinguishes between ‘faces’ and ‘exposed faces’ (cf. [49,
Sec. 2.1]). These terms coincide for polyhedral sets, i.e., for intersections of finitely
many half-spaces (see for example [49, Sec. 2.4]). In particular, any polyhedral
set can be written as the disjoint union of the relative interiors of its (exposed)
faces (see [49, Thm. 2.1.2]). Since we will only talk about faces in the context of
polyhedral sets (polyhedral cones), we will drop the additional term ‘exposed’ for
brevity.

It can be shown that for a face F e ⊆ Ke the normal cone is the same for all
points in the relative interior

∀x, y ∈ relint(F e) : Nx(Ke) = Ny(Ke) .

See for example [49, Sec. 2.2] for a proof of this fact. We may therefore define for
every face F e of Ke

NF e(Ke) := Nx(Ke) and NS
F e(K

e) := NS
x (Ke) ,

where x ∈ relint(F e). Analogously, if K ∈ K(Sn−1) and if F is a face of K we define

NF (K) := Np(K) and NS
F (K) := NS

p (K) ,

where p ∈ relint(F e) ∩ Sn−1, F e := cone(F ).

Lemma 3.1.9. Let C ⊂ Rn be a polyhedral cone and let Fm(C) denote the set of
all m-dimensional faces of C. Then C̆ is a polyhedral cone, and for F ∈ Fm(C) the
normal cone NF (C) is a (n−m)-dimensional face of C̆. Furthermore, the map

Fm(C)→ Fn−m(C̆) , F 7→ NF (C) (3.3)

is bijective, and its inverse is given by Fn−m(C̆)→ Fm(C), F̆ 7→ NF̆ (C̆).

Proof. See for example [47, § 19] for a proof that C̆ is polyhedral. The normal
cone NF (C) is a face of C̆ by Proposition 3.1.5. If F ∈ Fm(C) and W := lin(F )
is the m-dimensional span of F , then it is straightforward to show that NF (C) =
W⊥ ∩ C̆ and NF (C) has dimension n −m. This also shows the bijectivity of the
map defined in (3.3). Finally, recall that (C̆ )̆ = C. Since F = lin(F ) ∩ C and
NF (C) = lin(F )⊥ ∩ C̆ we get the claimed formula for the inverse. 2

To illustrate the concept of normal cones let us consider the positive orthant
and compute the normal cones for this important convex cone.

Example 3.1.10. Let C = Rn+ the n-dimensional positive orthant. The cone C
is a polyhedral cone, i.e., it is the intersection of finitely many (linear) half-spaces
(n in this case). Furthermore, the positive orthant is a self-dual cone, i.e., we have
C̆ = −C = Rn−. Hence, Proposition (3.1.5) implies that Nx(C) = −x⊥ ∩ C for
x ∈ C.
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A typical k-dimensional face F of C with 0 ≤ k ≤ n is given by (in)equalities of
the form

x1 ≥ 0 , x2 ≥ 0 , . . . , xk ≥ 0 , xk+1 = xk+2 = . . . = xk = 0 ,

and its relative interior is defined by the (strict in)equalities

x1 > 0 , x2 > 0 , . . . , xk > 0 , xk+1 = xk+2 = . . . = xk = 0 .

Note that the number of k-dimensional faces of C is given by
(
n
k

)
. We will need this

later when we compute the intrinsic volumes of C. The normal cone of the above
defined face F is given by the (in)equalities

x1 = x2 = . . . = xk = 0 , xk+1 ≤ 0 , xk+2 ≤ 0 , . . . , xn ≤ 0 .

3.1.1 Minkowski addition and spherical analogs

A central notion of convex geometry in euclidean space is the Minkowski addition

M1 +M2 := {x+ y | x ∈M1 , y ∈M2} ,

where M1,M2 ⊆ Rn. If M1 and M2 are both convex, then so is their Minkowski
addition M1+M2. If additionally both sets are compact, i.e., M1 and M2 are convex
bodies in Rn, then so is M1 +M2. In fact, the Minkowski addition gives the set of
convex bodies K(Rn) the structure of a commutative semigroup (cf. [49, Sec. 1.7]).

This rich structure of K(Rn) due to the Minkowski addition unfortunately does
not exist in the set of spherical convex sets K(Sn−1). However, some special cases of
Minkowski addition do have spherical analogs, which will occupy us in the remainder
of this section.

One special case of Minkowski addition is the direct product

M̄1 × M̄2 = {(x̄, ȳ) | x̄ ∈ M̄1 , ȳ ∈ M̄2} ⊆ Rn ,

where M̄1 ⊆ Rn1 , M̄2 ⊆ Rn2 , and n := n1 + n2. If we set

M1 := {(x̄, 0) | x̄ ∈ M̄1} ⊆ Rn , M2 := {(0, ȳ) | ȳ ∈ M̄2} ⊆ Rn ,

then we get M̄1 × M̄2 = M1 + M2. This product construction carries over to the
spherical setting in the following way.

Definition 3.1.11. For Ū1 ⊆ Sn1−1 and Ū2 ⊆ Sn2−1 let

Ū1 ~ Ū2 := (cone(Ū1)× cone(Ū2)) ∩ Sn−1 ,

where n := n1 + n2. Recursively, we also define Ū1 ~ . . . ~ Ūk for Ūi ⊆ Sni−1,
i = 1, . . . , k.

If C̄1 ⊆ Rn1 and C̄2 ⊆ Rn2 are two closed convex cones, then the product of
these cones C̄1 × C̄2 is also a closed convex cone. Therefore, if K̄1 ∈ K(Sn1−1) and
K̄2 ∈ K(Sn2−1), then K̄1 ~ K̄2 ∈ K(Sn−1), where n = n1 + n2.

Another special case of Minkowski addition is given by tubes.

Definition 3.1.12. For Me ⊆ Rn and r ≥ 0 the tube of radius r around Me is
defined as

T e(Me, r) := {x ∈ Rn | ∃y ∈Me : de(x, y) ≤ r} .

For M ⊆ Sn−1 and α ≥ 0 the tube of radius α around M is defined as

T (M,α) := {p ∈ Sn−1 | ∃q ∈M : d(p, q) ≤ α} .
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Remark 3.1.13. In the euclidean case the tube of radius r around the set Me ⊆ Rn
can also be written as the Minkowski addition

T e(Me, r) = Me +Bn(r) ,

where Bn(r) := {x ∈ Rn | ‖x‖ ≤ r} denotes the closed ball of radius r in Rn
centered at the origin.

In the case where Me ⊆ Rn and M ⊆ Sn−1 are closed sets, we can also write
the tubes in the following form

T e(Me, r) = {x ∈ Rn | de(x,Me) ≤ r} ,
T (M,α) = {p ∈ Sn−1 | d(p,M) ≤ α} ,

where de(x,Me) := min{d(x, y) | y ∈Me} and similarly for d(p,M).

Remark 3.1.14. If K ∈ K(Sn−1) is a spherically convex set, and C := cone(K),
then using the projection function ΠK defined in (3.2) it is straightforward to show
that for 0 ≤ α < π

2

T (K,α) = T e(C, sin(α)) ∩ Sn−1 .

In euclidean space the tube around a convex body is again a convex body, as it
arises as the Minkowki addition of a convex body with a closed ball, which is also
a convex body. In contrast to that, if K ∈ K(Sn−1) is a spherical convex set, then
it is a nontrivial question if the tube T (K,α) is again convex. We will treat this
question in the following section.

3.1.2 On the convexity of spherical tubes

In euclidean space tubes of convex bodies are again convex bodies. We have seen
this in the last section. However, in the sphere the situation is very different. In
fact, we will see that if K ∈ K(Sn−1) is polyhedral, i.e., cone(K) is the intersection
of finitely many half-spaces, then for all α > 0 we have T (K,α) 6∈ K(Sn−1).

The following lemma collects some trivial cases where a tube around a set fails
to be convex.

Lemma 3.1.15. Let U ⊆ Sn−1, U 6= ∅, and let α ≥ 0.

1. If α ≥ π then T (U,α) = Sn−1. In particular, T (U,α) 6∈ K(Sn−1).

2. If there is a point p ∈ U such that also −p ∈ U , then T (U,α) 6∈ K(Sn−1) for
all α > 0.

3. If α > π
2 then T (U,α) 6∈ K(Sn−1).

4. If α = π
2 then T (U,α) ∈ K(Sn−1) ⇐⇒ U = {p}.

Proof. Let’s process the statements one by one:

1. Follows from U 6= ∅ and diam(Sn−1) = π.

2. Let us assume that T (U,α) is convex for some α > 0. We will show that in
this case T (U,α) = Sn−1, which proves the claim as Sn−1 6∈ K(Sn−1). Let
q ∈ Sn−1 \ {±p}. The 2-dimensional picture of the subspace L := lin{p, q}
shows that q lies on a geodesic segment between two points q1, q2 in L, such
that d(q1, p) ≤ α and d(q2,−p) ≤ α (cf. Figure 3.1). The convexity of T (U,α)
thus implies q ∈ T (U,α), and hence T (U,α) = Sn−1.
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p−p

q

q1q2

α

Figure 3.1: Illustration for the proof of Lemma 3.1.15 part (2).

3. It is easily seen that T (U, π2 ) contains a pair of antipodal points. The claim
now follows from part (2) with U ′ := T (U, π2 ) and the observation T (U,α) =
T (U ′, α− π

2 ).

4. The ‘⇐’-direction is trivial, so let us assume T (U, π2 ) ∈ K(Sn−1). If p, q ∈ U
with q 6= ±p, then α := d(p, q) ∈ (0, π), and L := lin{p, q} is a 2-dimensional
subspace. Since L∩ T (U, π2 −

α
2 ) contains a pair of antipodal points, which is

easily verified in R2, the claim follows from part (3). 2

The following proposition shows that in the most important examples of convex
cones arising in convex programming, the tube around the corresponding spherical
convex set is never convex.

Proposition 3.1.16. Let K ∈ K(Sn−1) be a spherical convex set. If the boundary
∂K contains a geodesic segment, then T (K,α) 6∈ K(Sn−1) for all α > 0. If n ≥ 3
and K is polyhedral and contains more than one point, or if K = K1~K2 for some
spherical convex sets K1 and K2, then T (K,α) 6∈ K(Sn−1) for all α > 0.

Remark 3.1.17. Proposition 3.1.16 implies that the map

αmax : K(Sn−1)→ R , K 7→ sup{α | T (K,α) ∈ K(Sn−1)}

is not continuous if n ≥ 3. Indeed, we will show in Proposition 3.3.4 that the
family of polyhedral convex sets lies dense in K(Sn−1). So if the map αmax were
continuous, then for n ≥ 3 it had to be the zero map. But this is not true, as is
seen by the example of a closed spherical ball. More precisely, if Bρ(p) denotes the
closed spherical ball of radius ρ, 0 ≤ ρ ≤ π

2 , around the point p, then T (Bρ(p), α) =
Bρ+α(p). From this it follows that αmax(Bρ(p)) = π

2 − ρ.

Remark 3.1.18. In Corollary 4.1.13, assuming K ∈ K(Sn−1) has smooth bound-
ary, we will give an upper bound for the maximal radius α0 ∈ [0, π] such that
T (K,α) ∈ K(Sn−1) for all α ∈ [0, α0].

Proof of Proposition 3.1.16. By Lemma 3.1.15 parts (3) and (4) we may assume
that 0 < α < π

2 . Denoting C := cone(K) we have T (K,α) = T e(C, sin(α)) ∩ Sn−1

(cf. Remark 3.1.14), so we may argue over the cone C. Let p1, p2 ∈ ∂K, p1 6= ±p2,
with geod(p1, p2) ⊂ ∂K, i.e., (1 − λ) · p1 + λ · p2 ∈ ∂C for all λ ∈ [0, 1]. Let
x := 1

2 · p1 + 1
2 · p2, and let v ∈ NS

x (C). We now consider the points

q1 := cos(α) · p1 + sin(α) · v ,
q2 := cos(α) · p2 + sin(α) · v ,
y := 1

2 · q1 + 1
2 · q2

= cos(α) · x+ sin(α) · v .
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Then ‖q1‖ = ‖q2‖ = 1, ‖y‖ < 1 and de(q1, C) ≤ sinα, de(q2, C) ≤ sinα, and
de(y, C) = sinα. So q1, q2 ∈ T (K,α) and y◦ := ‖y‖−1 · y ∈ geod(q1, q2). But
d(y◦,K) = arcsin

(
sinα
‖y‖
)
> α, so y◦ 6∈ T (K,α), which shows that T (K,α) is not

convex.
As for the additional statements, if n ≥ 3 and K is polyhedral and contains

more than one point, then K either consists of two antipodal points, in which case
T (K,α) 6∈ K(Sn−1) for all α > 0 by Lemma 3.1.15 part (2), or the dimension of
the linear hull of K is at least 2. In the second case the boundary ∂K contains a
geodesic segment, and hence T (K,α) 6∈ K(Sn−1) for all α > 0.

In the case K = K1 ~ K2 for Ki ∈ K(Sni−1), i = 1, 2, let pi ∈ ∂Ki, i = 1, 2.
Then {(cos(ρ) · p1, sin(ρ) · p2) | 0 ≤ ρ ≤ π

2 } ⊆ ∂K, i.e., a geodesic segment is
contained in the boundary of K, and thus T (K,α) 6∈ K(Sn−1) for all α > 0. 2

The assumption that T (K,α) is convex may not always be satisfiable, but if it
is, then we have an important property that we state in the following proposition.

Proposition 3.1.19. Let K ∈ K(Sn−1) and let T (K,α0) ∈ K(Sn−1), α0 > 0.
Then for all K ′ ∈ K(Sn−1) such that K ∩ K ′ = ∅ and d(K,K ′) := min{d(q, q′) |
q ∈ K , q′ ∈ K ′} < α0 there exists a unique pair (p, p′) ∈ K × K ′ such that
d(p, p′) = d(K,K ′).

Lemma 3.1.20. Let K ∈ K(Sn−1) and let T (K,α0) ∈ K(Sn−1), α0 > 0. Then
T (K,α) ∈ K(Sn−1) for all 0 ≤ α ≤ α0.

Proof. From Lemma 3.1.15 part (3) we get α0 ≤ π
2 , and with part (4) from the

same lemma we can easily treat the case α0 = π
2 . So we may assume α0 < π

2 .
We show the contraposition, i.e., we assume that for some 0 < α < α0 we have
T (K,α) 6∈ K(Sn−1) and we need to show that also T (K,α0) 6∈ K(Sn−1).

Let p1, p2 ∈ T (K,α) such that q ∈ geod(p1, p2) but q 6∈ T (K,α), i.e., ρ :=
d(q,K) > α. If ρ > α0, then we are done, as in this case T (K,α0) is not convex.
So we assume ρ ≤ α0 for the rest of the proof. This in particular implies ρ < π

2
so that the projection of q onto K is well-defined. Let q̃ denote the rotation of q
in the 2-dimensional plane L := lin{q,ΠK(q)} by an angle of α0 − α in direction
away from K (cf. Figure 3.2(a)). It follows that d(q̃, K) = d(q,K) + α0 − α > α0.
To finish the proof it suffices to show that q̃ lies on a geodesic between points in
T (K,α0), as this implies that T (K,α0) not convex. To show this let

p1 = x1 + y1 , p2 = x2 + y2 , with x1, x2 ∈ L , y1, y2 ∈ L⊥ .

Let x̃1 and x̃2 be the results of the same rotation in L that we applied on q, and let
p̃i := x̃i + yi, i = 1, 2. Then (cf. Figure 3.2(b))

‖pi − p̃i‖ = ‖xi − x̃i‖ = ‖xi‖ · 2 · sin(α0−α
2 ) ≤ 2 · sin(α0−α

2 ) ,

which implies d(pi, p̃i) = 2 · arcsin(pi−p̃i2 ) ≤ α0 − α, i = 1, 2. By the triangle
inequality for d(., .) we have p̃1, p̃2 ∈ T (K,α0). Furthermore, as the above described
operation that sends q to q̃ and pi to p̃i, i = 1, 2, is an element of the orthogonal
group, we get q̃ ∈ geod(p̃1, p̃2). This finishes the proof. 2

Proof of Proposition 3.1.19. We reproduce the proof from [30, Hilfssatz 7.1] in a
simplified form. By Lemma 3.1.15 part (3) we have α0 ≤ π

2 and by Lemma 3.1.20
we have T (K,α) ∈ K(Sn−1), where α := d(K,K ′) < α0.
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(a) Definition of q̃
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(b) ‖p− p̃‖ = 2 · sin
` d(p,p̃)

2

´

Figure 3.2: Illustrations for the proof of Lemma 3.1.20.

We assume that we have two pairs (p, p′), (q, q′) ∈ K×K ′, (p, p′) 6= (q, q′), which
both satisfy d(p, p′) = d(q, q′) = d(K,K ′), so that we need to derive a contradiction.
The first observation is that p′ 6= ±q′, which can be seen in the following way. As
d(p, p′) = d(K,K ′) < α0 ≤ π

2 , we have p = ΠK(p′). Similarly, we have q = ΠK(q′).
So if p′ = q′ then also p = q, contradicting the assumption (p, p′) 6= (q, q′). If
p′ = −q′ then we have p′,−p′ ∈ T (K,α), and by Lemma 3.1.15 part (2) we get
T (K,α0) = T (T (K,α), α0 − α) 6∈ K(Sn−1), which is a contradiction.

Now that we have p′ 6= ±q′ we can argue over the geodesic segment geod(p′, q′).
As geod(p′, q′) ⊂ T (K,α) ∩ K ′ and T (K, ρ) ∩ K ′ = ∅ for all 0 ≤ ρ < α, we get
geod(p′, q′) ⊂ {p̃ | d(p̃,K) = α} = ∂T (K,α). But then Proposition 3.1.16 implies
that T (K,α0) = T (T (K,α), α0 − α) 6∈ K(Sn−1), which is a contradiction. This
finishes the proof. 2

3.2 The metric space of spherical convex sets

Besides being important in its own, tubes can be used to define the Hausdorff
distances, which turn K(Rn) and K(Sn−1) into metric spaces. See Figure 3.3 for a
small display.

Definition 3.2.1. The Hausdorff distance on K(Rn) is defined by

deH(Ke
1 ,K

e
2) = max

{
min{r ≥ 0 | Ke

2 ⊆ T e(Ke
1 , r)} , min{s ≥ 0 | Ke

1 ⊆ T e(Ke
2 , s)}

}
= max

{
max{de(Ke

1 , y) | y ∈ Ke
2} , max{de(Ke

2 , x) | x ∈ Ke
1}
}
,

for Ke
1 ,K

e
2 ∈ K(Rn). The Hausdorff distance on K(Sn−1) is defined by

dH(K1,K2) = max
{

min{α ≥ 0 | K2 ⊆ T (K1, α)} , min{β ≥ 0 | K1 ⊆ T (K2, β)}
}

= max
{

max{d(K1, q) | q ∈ K2} , max{d(K2, p) | p ∈ K1}
}
,

for K1,K2 ∈ K(Sn−1).

Remark 3.2.2. Recall that for K1,K2 ∈ K(Sn−1) we have defined d(K1,K2) =
min{d(p, q) | p ∈ K1, q ∈ K2}. This does not define a metric, as d(K1,K2) = 0 iff
K1∩K2 6= ∅, which is not equivalent to K1 = K2. In general we have the inequality
d(K1,K2) ≤ dH(K1,K2).

Proposition 3.2.3. The map deH : K(Rn)×K(Rn)→ R is a metric on K(Rn), and
the map dH : K(Sn−1) × K(Sn−1) → R is a metric on K(Sn−1). Both K(Rn) and
K(Sn−1) are complete as metric spaces. Additionally, K(Sn−1) is compact.
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1⊆T
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Figure 3.3: The Hausdorff distance between two sets Ke
1 ,K

e
2 ∈ K(R2).

Proof. See for example [49, Sec. 1.8] for the euclidean statements. The statements
that the Hausdorff distance is a metric on K(Sn−1), and that K(Sn−1) is a complete
metric space can be shown in the same vein. As for the compactness of K(Sn−1), let
C(Sn−1) denote the set of nonempty closed subsets of Sn−1. The Hausdorff distance
turns C(Sn−1) into a compact metric space (cf. [49, p. 56, Note 2]). As K(Sn−1) is
a closed subset of C(Sn−1), it is compact. 2

Concerning the spherical Hausdorff metric and the duality map, note that it
is not true that the duality map is an isometry. Consider for example a closed
spherical ball of radius ρ, 0 < ρ < π

2 , in Sn−1 (we will call these convex sets
circular caps; cf. Section 3.3), and denote this convex set by Kρ. Then we have
dH(Kρ,−Kρ) = π − ρ. But the dual K̆ρ is a closed spherical ball of radius π

2 − ρ,
so that dH(K̆ρ,−K̆ρ) = π

2 + ρ. So dH(Kρ,−Kρ) 6= dH(K̆ρ,−K̆ρ) for ρ 6= π
4 and

therefore the map K 7→ K̆ is not an isometry. But these are only ‘global’ effects,
i.e., locally the duality map is in fact isometric, which is shown by the following
proposition.

Proposition 3.2.4. Let K1,K2 ∈ K(Sn−1) with dH(K1,K2) < π
2 . Then

dH(K1,K2) = dH

(
K̆1, K̆2

)
,

i.e., the duality map is a local isometry.

Recall that K̆ = {p ∈ Sn−1 | d(K, p) ≥ π
2 }, cf. Remark 3.1.2. In the proof we

will make use of the following lemma.

Lemma 3.2.5. Let K ∈ K(Sn−1). Then for p ∈ Sn−1 \ (K ∪ K̆) we have d(K, p) +
d(K̆, p) = π

2 . Furthermore, T (K̆, α) = {p ∈ Sn−1 | d(K, p) ≥ π
2 −α} for 0 ≤ α < π

2 .

Proof. For the first part of the claim see [30, Hilfssatz 2.1] or [13, Lemma 2.3].
As for the second part, we have K̆ ⊆ {q ∈ Sn−1 | d(K, q) ≥ π

2 − α}, and for
p ∈ Sn−1 \ (K ∪ K̆) we have d(K̆, p) ≤ α iff d(K, p) ≥ π

2 − α. 2

Proof of Proposition 3.2.4. This was shown in [30, Hilfssatz 2.2]. We reproduce
the proof for completeness. Let α := dH(K1,K2) < π

2 . If p ∈ Sn−1 is such that
d(K1, p) < π

2 − α, then there exists q ∈ K1 ⊆ T (K2, α) such that d(q, p) < π
2 − α.
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The triangle inequality implies that d(K2, p) < π
2 . Therefore, we get

K̆2 = {p ∈ Sn−1 | d(K2, p) ≥ π
2 }

⊆ {p ∈ Sn−1 | d(K1, p) ≥ π
2 − α}

= T (K̆1, α) ,

where the last equality follows from Lemma 3.2.5. By symmetry, we have K̆1 ⊆
T (K̆2, α), and thus dH(K̆1, K̆2) ≤ α. Interchanging the roles of K1,K2 and K̆1, K̆2

yields the claimed result. 2

A special class of convex sets in the sphere is the family of subspheres. We dis-
tinguish between subspheres and non-subspheres, and use the following conventions:
For k = 0, . . . , n− 2

Sk(Sn−1) := {S ⊂ Sn−1 | S is a k-dim. subsphere} , (3.4)

S∗(Sn−1) :=
n−2⋃
k=0

Sk(Sn−1) ,

Kc(Sn−1) := K(Sn−1) \ S∗(Sn−1)

= {K ∈ K(Sn−1) | K is not a subsphere} .

Note that there is a canonical bijection between Sk(Sn−1), the set of k-dimensional
subspheres of Sn−1, and Grn,k+1, the set of (k + 1)-dimensional subspaces of Rn,
given by

Grn,k+1 → Sk(Sn−1) , W 7→ W ∩ Sn−1 ,

Sk(Sn−1)→ Grn,k+1 , S 7→ {λp | λ ∈ R , p ∈ S} .

Note that S̆ = S⊥ :=W⊥ ∩ Sn−1 for S ∈ S∗(Sn−1) with W := lin(S).
As the non-subspheres are central objects for our study, we will call elements in

Kc(Sn−1) caps. Note that this naming is different from other works, where ‘cap’
may stand for a spherical ball (cf. for example [13]). We will denote spherical balls
by the term circular caps.

Remark 3.2.6. 1. Here is a mnemonic for this specific way of speaking:

“You can wear caps , but you cannot wear subspheres .”

2. An element K ∈ K(Sn−1) is a cap iff ∃p ∈ K : −p 6∈ K.

3. An element K ∈ K(Sn−1) is a cap iff its dual K̆ is a cap.

The existence of the subspheres leads to a fundamental difference between the
metric spaces K(Rn) and K(Sn−1). Note that K(Rn) is path-connected, as for every
K ∈ K(Rn) we have the continuous path [0, 1]→ K(Rn), t 7→ t ·K, which connects
K with {0} ∈ K(Rn). This is not the case in the spherical setting.

Proposition 3.2.7. The decomposition of K(Sn−1) in its connected components is
given by

K(Sn−1) = Kc(Sn−1) ∪̇
n−2⋃̇
k=0

Sk(Sn−1) ,

and the components are path-connected (see Figure 3.4).
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S0(Sn−1)
∼= Grn,1

S1(Sn−1)
∼= Grn,2

Sn−2(Sn−1)
∼= Grn,n−1

Kc(Sn−1)

· · ·

≥ π
2 ≥ π

2 ≥ π
2

π
2

π
2

π
2

Figure 3.4: The decomposition of K(Sn−1) in its connected components and their
pairwise Hausdorff distances.

Lemma 3.2.8. If K ∈ Kc(Sn−1) and S ∈ S∗(Sn−1) then dH(K,S) ≥ π
2 . Further-

more, if S1 ∈ Sk1(Sn−1) and S2 ∈ Sk2(Sn−1) with k1 6= k2, then dH(S1, S2) = π
2 .

Proof. From Theorem 2.2.5 it follows that K∩S⊥ 6= ∅ or K̆∩S 6= ∅, so in particular
K 6⊆ T (S, α) for all 0 ≤ α < π

2 or S 6⊆ T (K,α) for all 0 ≤ α < π
2 , i.e., dH(K,S) ≥ π

2 .
Concerning the subspheres, let Wi := linSi, i = 1, 2. If k1 6= k2 then either
dimW1+dimW⊥2 > n or dimW⊥1 +dimW2 > n, in particular dim(W1∩W⊥2 ) ≥ 1 or
dim(W⊥1 ∩W2) ≥ 1. IfW1∩W⊥2 6= {0}, then S1 6⊆ T (S2, α) for all 0 ≤ α < π

2 , hence
dH(S1, S2) ≥ π

2 . Similarly, one gets dH(S1, S2) ≥ π
2 for the case W⊥1 ∩ W2 6= {0}.

Equality follows from T (S, π2 ) = Sn−1 for any S ∈ S∗(Sn−1). 2

Lemma 3.2.9. Let K ∈ Kc(Sn−1). Then there exists p ∈ Sn−1 and a continuous
path Kt ∈ Kc(Sn−1), t ∈ [0, 1], such that K0 = K and K1 = {p}.

Proof. Let C := cone(K), and let v ∈ K̆ such that −v 6∈ K̆ (cf. Remark 3.2.6). Note
that K 6⊆ v⊥. For q ∈ Sn−1 and ρ ≥ 0 let B(q, ρ) := T ({q}, ρ) denote the spherical
ball of radius ρ around q. Since v ∈ K̆ we have K ⊆ B(−v, π2 ). Furthermore, as
K 6⊆ v⊥, there exists 0 < α ≤ π

2 such that K ∩B(−v, π2 −α) 6= ∅. This implies that

α0 := max{α ∈ [0, π2 ] | K ∩B(−v, π2 − α) 6= ∅}

is positive, i.e., α0 > 0. If α0 = π
2 , then B(−v, π2 −α0) = {−v}, and we set p := −v.

If α0 <
π
2 , then Proposition 3.1.19 implies that K ∩B(−v, π2 − α0) = {p} for some

p ∈ Sn−1. We may now define the continuous path via

Kt := K ∩B(−v, π2 − t · α0) . 2

Proof of Proposition 3.2.7. The path-connectedness of Sk(Sn−1) follows from the
path-connectedness of the Grassmann manifold Grn,k+1 (cf. Chapter 5): Elements
S1, S2 ∈ Sk(Sn−1) are of the form Si = Wi ∩ Sn−1 with Wi ∈ Grn,k+1, i = 1, 2. If
Wt, 1 ≤ t ≤ 2 describes a path in Grn,k+1 between W1 and W2 then so does the
path St :=Wt ∩ Sn−1 in Sk(Sn−1).

For the component Kc(Sn−1) we can do the same trick as in the euclidean case,
i.e., for K1,K2 ∈ Kc(Sn−1) we may ‘shrink’ Ki to {pi} for some pi ∈ Sn−1, i = 1, 2,
by Lemma 3.2.9. We can then connect the shrinked sets, thus getting a path from
K1 to K2 in Kc(Sn−1).

The pairwise disjointness of the sets Sc(Sn−1) and Sk(Sn−1), 1 ≤ k ≤ n− 2, as
well as their closedness follows from Lemma 3.2.8. 2
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3.3 Subfamilies of spherical convex sets

In the last section we have seen that the set of spherical convex sets decomposes
into subspheres and caps. The set of caps Kc(Sn−1) should be seen as the essential
part of K(Sn−1) containing a variety of sets with diverse properties. We need to
specify subfamilies of K(Sn−1) with whom we can work in a unified way. In this
section we will present the different subfamilies of spherical convex sets, that will
appear in our analyses.

We begin with the set of polyhedral convex sets.

Definition 3.3.1. A spherical convex set K ∈ K(Sn−1) is called polyhedral if
cone(K) is the intersection of finitely many n-dimensional half-spaces

Kp(Sn−1) := {K ∈ K(Sn−1) | cone(K) = H1 ∩ . . . ∩Hk , Hi = (half-space in Rn)}.

Proposition 3.3.2. 1. If K ∈ Kp(Sn−1) then also K̆ ∈ Kp(Sn−1).

2. If K ∈ Kp(Sn−1), then the cone C := cone(K) can be written in the form
C = cone({p1, . . . , pN}) for some p1, . . . , pN ∈ Sn−1. Moreover, if C is of the
above form, then K = C ∩ Sn−1 is polyhedral.

Proof. See for example [47, Sec. 19]. 2

Example 3.3.3. Our standard example for a polyhedral convex set is the inter-
section of the positive orthant with the unit sphere Rn+ ∩ Sn−1. We have already
computed the normal cones for this spherical convex set in Example 3.1.10, and we
will meet this example again on several occasions.

By definition, the set of polyhedral convex sets contains the subspheres of Sn−1,
i.e., S∗(Sn−1) ⊂ Kp(Sn−1). Furthermore, every cap can be approximated by poly-
hedral caps, which is the content of the following proposition.

Proposition 3.3.4. The family of polyhedral convex sets Kp(Sn−1) lies dense in
the family of spherical convex sets K(Sn−1).

Proof. We reproduce the proof from [30, Hilfssatz 2.5] for completeness. Let K ∈
K(Sn−1) and let ε > 0. We need to find a polyhedral set P with dH(K,P ) < ε.
For p ∈ Sn−1 and ρ > 0 let B◦ρ(p) denote the interior of the circular cap around p
of radius ρ. The family {B◦ε (p) | p ∈ K} forms an open cover of K, and by
compactness of K there exists an open subcover {B◦ε (p1), . . . , B◦ε (pk)}. The cone
C := cone({p1, . . . , pk}) is a polyhedral cone, and thus P := C ∩ Sn−1 ∈ Kp(Sn−1).
Furthermore, we have P ⊆ K, as p1, . . . , pk ∈ K. It is verified easily that K ⊂
T (P, ε), which finishes the proof. 2

So if we use the notation
d
⊂ to denote a dense inclusion, we can summarize briefly

(omitting the brackets to ease the notation)

S∗ ⊂ Kp
d
⊂ K .

Another important subfamily of spherical convex sets is given by the set of
regular caps.

Definition 3.3.5. A spherical convex set K ∈ K(Sn−1) is called regular if both K
and K̆ have nonempty interior

Kr(Sn−1) := {K ∈ K(Sn−1) | int(K) 6= ∅ and int(K̆) 6= ∅} .
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Note that subspheres are not regular, i.e., we have Kr(Sn−1) ⊂ Kc(Sn−1).

Remark 3.3.6. The property int(K̆) 6= ∅ is equivalent to K ∩−K = ∅. In particu-
lar, regular cones (cf. Section 2.2) are exactly those cones C, which are of the form
C = cone(K) with K ∈ Kr(Sn−1).

In Section 4.1.2 we will define a subfamily Ksm(Sn−1) ⊂ Kr(Sn−1), which we call
the family of smooth caps. We will give the precise definition later in Section 4.1.2.
Instead, let us have a look at our standard example of a smooth cap.

Example 3.3.7. Our standard example of a smooth cap is a circular cap Bρ(p) =
{q ∈ Sn−1 | d(p, q) ≤ ρ}, where p ∈ Sn−1 and 0 < ρ < π

2 . A circular cap is self-
dual iff ρ = π

4 . In this case, we say that Bπ/4(p) is an n-dimensional Lorentz cap.
As is the case for the positive orthant, we will meet circular caps again on several
occasions.

In Section 4.1.2 (cf. Proposition 4.1.10) we will see that smooth caps lie dense
in Kc(Sn−1). In particular, they lie dense in Kr(Sn−1) and Kr(Sn−1) lies dense in
Kc(Sn−1). So we may summarize

Ksm
d
⊂ Kr

d
⊂ Kc .

Both polyhedral and smooth convex sets are special cases of stratified convex
sets, which we define in the remainder of this section. We will state and prove
Weyl’s tube formula for (euclidean and for spherical) convex sets in Section 4.3
for stratified convex sets. Besides the pleasing fact that this formula specializes
to the polyhedral and the smooth case, the main reason for using stratified sets is
that the semidefinite cone is neither smooth nor polyhedral, but it is a stratified
cone. We will give the formulas for the intrinsic volumes of the semidefinite cone
in Section 4.4.1; the derivation of these formulas is outsurced to Section C.2 in the
appendix. Although we do not have a concrete use for these formulas yet, we believe
that a good understanding of these quantities will reveal important insights in the
complexity of semidefinite programming. In any case, it should be evident that this
application of Weyl’s tube formula justifies the extra effort it takes to state and
prove this formula for stratified convex sets.

Before we give the definition of stratified convex sets, we need to recall some
elementary concepts from differential geometry. To keep it as simple as possible we
restrict ourselves to submanifolds of euclidean space. See for example the introduc-
tory chapters in [53] (although we might use a slightly different notation) for the
background of the notions we will treat next.

Let M ⊆ Rn be a smooth submanifold of euclidean space, where smooth gener-
ally means C∞. We say that ϕ : Rd →M is a local parametrization of M , if ϕ is a
(smooth) diffeomorphism between Rd and an open subset of M . The tangent space
TpM of M in p is by definition the linear space consisting of all vectors, which arise
as velocities in p of curves in M passing through p, i.e.,

TpM = {ċ(0) | c : R→M smooth curve with c(0) = p} .

We will use the notation ċ as well as dc
dt to denote the derivative of a curve c. The

tangent spaces are linear subspaces of Rn, and the normal space T⊥p M of M in p
is defined as the orthogonal complement of TpM in Rn. So we have an orthogonal
decomposition TpRn = TpM ⊕ T⊥p M , where we use the notation TpRn = Rn to
indicate that we consider the vectors as tangent vectors in p. The unit sphere has
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the tangent spaces TpSn−1 = p⊥, and if M ⊆ Sn−1 is a submanifold of the unit
sphere, we have TpM ⊆ TpSn−1 = p⊥.

We say that M̂ is a conic manifold, iff 0 6∈ M̂ and p ∈ M̂ implies that λ p ∈ M̂
for all λ > 0. Note that if we have a submanifold M of Sn−1, we may define
M̂ := {λ p | λ > 0, p ∈ M} and treat M̂ instead of M . Note also that if M̂ is a
conic manifold and p ∈ M̂ , then p ∈ TpM̂ where we use the canonical identification
TpRn = Rn. We call this direction p ∈ TpM̂ the cone direction.

The set of all tangent resp. normal spaces forms the tangent resp. normal bundle
(cf. [53, Ch. 3]). We may consider these bundles as submanifolds of Rn × Rn via

TM =
⋃
p∈M
{p} × TpM , T⊥M =

⋃
p∈M
{p} × T⊥p M .

Furthermore, we consider the unit normal bundle

T©⊥M :=
⋃
p∈M
{p} × (T⊥p M ∩ Sn−1) . (3.5)

And for M ⊆ Sn−1 we also consider the spherical normal bundle

TSM :=
⋃
p∈M
{p} × (T⊥p M ∩ Sn−1 ∩ p⊥) . (3.6)

Note that the difference between the unit and the spherical normal bundle lies in
the fact that the fiber {p} × (T⊥p M ∩ Sn−1 ∩ p⊥), p ∈ M , of the spherical normal
bundle lies in the tangent space of the unit sphere TpSn−1 = p⊥.

Remark 3.3.8. If M ⊆ Rn is a smooth d-dimensional manifold, then the tangent
and the normal bundle are smooth submanifolds of Rn×Rn of dimension 2d resp. d+
(n − d) = n. Furthermore, given a local parametrization ϕ : Rd → M , one can
construct local trivializations Φ: Rd × Rd → TM , Φ⊥ : Rd × Rn−d → T⊥M , i.e.,

1. we have
P ◦ Φ = ϕ , P ◦ Φ⊥ = ϕ , (3.7)

where P : Rn × Rn → Rn, (x, y) 7→ x, denotes the projection onto the first
component,

2. for every u ∈ Rd the maps

Φu : Rd → TpM , Φu(v) := Φ(u, v) ,

Φ⊥u : Rn−d → T⊥p M , Φ⊥u (v) := Φ⊥(u, v) ,

where p := ϕ(u), are linear.

The unit normal bundle is a hypersurface, i.e., a submanifold of codimension 1, of
the normal bundle, and the spherical normal bundle is a hypersurface of the unit
normal bundle.

The tangent and the normal bundle are both so-called vector bundles, as all
fibers of the canonical projection maps (3.7) are vector spaces. Loosely speaking,
these bundles are conglomerates of vector spaces, which are conjoined in a smooth
way. The unit and the spherical normal bundles are sphere bundles, as all fibers
are subspheres of the unit sphere. For Weyl’s tube formulas in Section 4.3 we need
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(a) construction
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M2

M3

(b) decomposition
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Ny(Ke)

x
Nx(Ke)Nx(Ke)

(c) normal cones

Figure 3.5: A lenticular disc is a nontrivial example for a (euclidean) stratified
convex set.

to consider another class of fiber bundles, where each fiber is given by (the relative
interior of) a convex cone, respectively its intersection with the unit sphere.

Recall that for a closed convex (not necessarily compact) set Ke ⊆ Rn, and a
point x ∈ Ke, we have given the normal cone Nx(Ke) and its intersection with the
unit sphere NS

x (Ke) = Nx(Ke) ∩ Sn−1 (cf. Definition 3.1.3). If we have a manifold
Me ⊆ Rn, which lies in Ke, i.e., Me ⊆ Ke, then we define the duality bundle NMe

via
NMe :=

⋃
x∈Me

{x} × relint(Nx(Ke)) ⊆ T⊥Me . (3.8)

Note that the duality bundle does not depend solely on Me but on both Me and
the convex set Ke. To keep the notation simple, we just write NMe. Note also that
without further assumptions, the duality bundle is not necessarily a manifold.

For a spherical convex set K ∈ K(Sn−1) and M ⊆ K, we define the spherical
duality bundle via

NSM :=
⋃
p∈M
{p} × (relint(Np(K)) ∩ Sn−1) ⊆ TSM . (3.9)

Note that by definition of the normal cone of K at p (cf. Definition 3.1.3) we have
Np(K) ⊆ p⊥.

We may now define the families of stratified convex sets. As we will state Weyl’s
tube formulas in Section 4.3 in both the spherical and the euclidean situation, we
will define stratified convex sets in both settings as well.

Definition 3.3.9. A convex set Ke ∈ K(Rn), resp. K ∈ K(Sn−1), is called stratified

if it decomposes into a disjoint union Ke =
⋃̇k
i=0M

e
i , resp. K =

⋃̇k
i=0Mi, such that:

1. For all 0 ≤ i ≤ k, Me
i is a smooth connected submanifold of Rn, resp. Mi is a

smooth connected submanifold of Sn−1.

2. For all 0 ≤ i ≤ k the duality bundle NMe
i , resp. the spherical duality bundle

NSMi is a smooth manifold.

A stratum Me
i , resp. Mi, is called essential if dimNMe

i = dimT⊥Me
i = n, resp.

dimNSMi = dimTSMi = n− 2. Otherwise it is called negligible.
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Example 3.3.10. See Figure 3.5 for a simple nontrivial example of a stratified
convex set Ke ∈ K(R3). The decomposition of Ke is given by

Ke = M0 ∪̇M1 ∪̇M2 ∪̇M3 ,

where M0 := int(Ke), and M1,M2,M3 are as indicated in the picture. It is easily
seen that all Mi are essential.

If we take x ∈ M1 and replace M1 in the decomposition by M1 \ {x} and {x},
then M1 \ {x} is an essential piece, and {x} is negligible.

We can also give an example where the condition that the duality bundles are
smooth manifolds is violated: Imagine that you take the lenticular disc from Fig-
ure 3.5 and let it drop vertically on the plain ground. Imagine further that it hits
the floor in a point x ∈ M1 and slightly bends the edge inwards, so that the re-
sulting normal cone at x only consists of a single ray. Then the bent version of the
piece M1 is still a submanifold of the boundary, but the duality bundle fails to be
a submanifold, as it does not have a constant dimension.

Usually, we will have M0 = int(K), so that ∂K =
⋃̇k
i=1Mi. Both polyhedral

and smooth caps are special cases of stratified caps: The natural decomposition of
a polyhedral convex set is given by the relative interiors of its faces, and we have
already seen that the normal cone is constant on the relative interior of a face.
Moreover, we will see that every smooth cap is a stratified cap in Section 4.1.2. So
we may summarize

Kp

Ksm

⊂
⊂
Kstr.
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Chapter 4

Spherical tube formulas

In this chapter we will state and prove Weyl’s euclidean and spherical tube formulas
for stratified convex sets. We will also discuss the resulting euclidean and spherical
intrinsic volumes. The intrinsic volumes of the semidefinite cone will be given in
Section 4.4.1.

4.1 Preliminaries

This section is devoted to some differential geometric preliminaries that we need for
the spherical tube formulas, as well as for some preliminary computations.

The first topic is the Weingarten map of manifolds which are embedded in eu-
clidean space. We will have to recall some elementary concepts from Riemannian
geometry, but as we are working in euclidean space these notions are all accessible
without requiring much background in differential geometry. Most of the neces-
sary material can be found for example in the introductory textbook [59]. We will
mention further sources in the course of this section.

The second topic is about spherical caps which have a smooth boundary. We
will show that the set of these smooth caps lies dense in the set of caps, and we will
compute the Weingarten map for tubes around smooth caps.

The third topic is about integration on submanifolds of euclidean space. As a
first application we will compute the volume of tubes around subspheres of the unit
sphere. From this we will get a set of structural functions of the unit sphere, which
will play a prominent role in Weyl’s spherical tube formulas.

The fourth and last topic is about several sequences related to the binomial
coefficient that will come up in subsequent computations. We will present them
in a condensed form, and we will state and prove some properties and identities
between them.

4.1.1 The Weingarten map for submanifolds of Rn

In this section let M ⊆ Rn be a smooth manifold. A tangent vector field along a
curve c : R → M is defined to be a map v : R → Rn such that v(t) ∈ Tc(t)M for
all t ∈ R. Note that for p ∈ M we get an orthogonal decomposition Rn = TpRn =
TpM ⊕ T⊥p M (cf. Section 3.3).

A tangent vector field v along a curve c : R→M is said to be parallel iff v̇(t) ∈
T⊥c(t)M for every t ∈ R. In this case, the tangent vector ζ := v(0) ∈ TpM , p := c(0),
is said to be parallel transported along the curve c. The following theorem about

53
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the existence and the uniqueness of parallel transport, and the angle-preserving
property of parallel transport will prove useful for later computations.

Theorem 4.1.1. Let M ⊆ Rn be a smooth manifold, let c : R → M be a curve
in M with p := c(0), and let ζ ∈ TpM . Then there exists a unique parallel vector
field v along c such that v(0) = ζ. Furthermore, if ζ1, ζ2 ∈ TpM and v1, v2 are
the corresponding parallel vector fields along c, then 〈v1(t), v2(t)〉 = 〈ζ1, ζ2〉 for all
t ∈ R. In particular, if ζ1, . . . , ζd ∈ TpM form an orthonormal basis of TpM , and if
v1, . . . , vd denote the corresponding parallel vector fields along c, then v1(t), . . . , vd(t)
form an orthonormal basis of Tc(t)M for all t ∈ R.

Proof. See [8, Thm. VII.3.12] (or [59, Ch. 8] for the hypersurface case d = n−1). 2

Remark 4.1.2. In the situation of Theorem 4.1.1 one can also define the parallel
transport of a subspace Y ⊆ TpM along the curve c: Let ξ1, . . . , ξk be a basis of Y,
and let w1, . . . , wk denote the corresponding vector fields along c. Then we say that
Yt := lin{w1(t), . . . , wk(t)} ⊆ Tc(t)M is the parallel transport of Y along c at time t.
For this definition to make sense it remains to show that Yt is independent of the
chosen basis ξ1, . . . , ξk. This is verified easily.

For a normal vector η ∈ T⊥p M and a curve c : R → M with c(0) = p, we say
that w : R → Rn is a normal extension of η along the curve c, iff w(0) = η and
w(t) ∈ T⊥c(t)M for all t ∈ R. In the following lemma we will show that we may
always find a normal extension w such that ẇ(0) ∈ TpM , and we may additionally
assume that ‖w(t)‖ = 1 for all t.

Lemma 4.1.3. Let M ⊆ Rn be a smooth manifold, let η ∈ T⊥p M be a normal
vector, and let c : R→M be a curve with c(0) = p. Furthermore, let Πt denote the
orthogonal projection onto the normal space T⊥c(t). Then the curve

w : R→ Rn , w(t) := Πt(η)

is a normal extension of η along c, which satisfies ẇ(0) ∈ TpM . Furthermore, if
Πt(η) 6= 0 for all t ∈ R, then also the curve w◦ defined by

w◦ : R→ Rn , w◦(t) := ‖w(t)‖−1 · w(t) , (4.1)

is a normal extension of η along c with ẇ◦(0) ∈ TpM .

Proof. The curves w and w◦ are obviously normal extensions of η, so it remains to
show the claim about ẇ(0) and ẇ◦(0). Let ζ1, . . . , ζd ∈ TpM form an orthonormal
basis of TpM , and let v1, . . . , vd : R→ TM denote their parallel transports along c
(cf. Theorem 4.1.1). Furthermore, let B : R → Rd×n◦ be such that the ith row of
B(t) is given by vi(t)T . The orthogonal projection Πt is thus given by

Πt(η) = η −B(t)TB(t) · η

(cf. Lemma 2.1.11). So we get

ẇ(0) = −Ḃ(0)TB(0) · η −B(0)T Ḃ(0) · η = −B(0)T Ḃ(0) · η ,

as η ∈ T⊥p M , and the projection of ẇ(0) on T⊥p M is given by

Π0(ẇ(0)) = −B(0)T Ḃ(0) · η −B(0)TB(0) · (−B(0)T Ḃ(0) · η)

= −B(0)T Ḃ(0) · η +B(0)T ·B(0)B(0)T︸ ︷︷ ︸
=Id

·Ḃ(0) · η

= 0 .
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This shows that ẇ(0) ∈ TpM .
As for the second claim, note that d

dt‖w(t)‖ = 〈ẇ(t),w(t)〉
‖w(t)‖ . This implies

ẇ◦(0) = −〈ẇ(0), η〉
‖η‖3

· η +
1
‖p‖
· ẇ(0) =

1
‖p‖
· ẇ(0) ∈ TpM ,

as ẇ(0) ∈ TpM and thus 〈ẇ(0), η〉 = 0. 2

Let p ∈ M , ζ ∈ TpM , and η ∈ T⊥p M . It can be shown that if c : R → M
is a curve with c(0) = p and ċ(0) = ζ, and if w : R → Rn is a normal extension
of η along c, then the orthogonal projection of ẇ(0) onto TpM neither depends on
the choice of the curve c nor on the choice of the normal extension w of η (cf. for
example [59, Ch. 14] for the hypersurface case, or [23, Ch. 6] for general Riemannian
manifolds). It therefore makes sense to define the map

Wp,η : TpM → TpM , ζ 7→ −ΠTpM (ẇ(0)) ,

where w : R→ Rn is a normal extension of η along a curve c : R→M which satisfies
c(0) = p and ċ(0) = ζ, and ΠTpM denotes the orthogonal projection onto the tangent
space TpM . This map is called the Weingarten map.

It can be shown that Wp,η is a symmetric linear map (cf. [23, Ch. 6]), so that it
has d := dimM real eigenvalues κ1(p, η), . . . , κd(p, η), which are called the principal
curvatures of M at p in direction η. The corresponding eigenvectors are called
principal directions.

When we are working with orientable hypersurfaces, i.e., with submanifolds of
codimension 1, which are endowed with a (global) unit normal vector field ν : M →
T⊥M , ν(p) ∈ T⊥p M , ‖ν(p)‖ = 1, then we abbreviate

Wp := Wp,ν(p) , κi(p) := κi(p, ν(p)) .

Lemma 4.1.4. Let M ⊂ Rn be an orientable hypersurface, and let ν be a unit
normal vector field of M . Then the Weingarten map of M is given by

Wp(ζ) = −Dpν(ζ)

for all p ∈ M , ζ ∈ TpM , where Dpν(ζ) denotes the directional derivative of ν at p
in direction ζ.

Proof. For p ∈ M and ζ ∈ TpM let c : R → M with c(0) = p and ċ(0) = ζ.
Furthermore, let wν(t) := ν(c(t)). By shrinking the domain of definition of c if
necessary, we may assume w.l.o.g. that 〈wν(t), wν(0)〉 > 0 for all t ∈ R. It follows
that the projection of ν(p) = wν(0) onto the normal space T⊥c(t)M = Rwν(t) is 6= 0.
Let w◦ denote the unit normal extension of ν(p) along c as defined in (4.1). As the
normal space T⊥c(t)M is one-dimensional for all t, we get wν(t) = w◦(t), and thus
ẇν(0) ∈ TpM by Lemma 4.1.3. This implies Wp(ζ) = ẇν(0) = Dpν(ζ). 2

If M ⊆ Sn−1 is a submanifold of the unit sphere then M̂ := {λ p | λ > 0, p ∈
M} is a conic manifold, i.e., 0 6∈ M̂ and x ∈ M̂ implies that λx ∈ M̂ for all
λ > 0. The cone direction x ∈ TxM̂ is a principal direction with corresponding
principal curvature 0. Note that we can find principal directions for the remaining
principal curvatures in the orthogonal complement of the cone direction, i.e., in x⊥.
If x = p ∈ Sn−1 then p⊥ is the tangent space of the unit sphere in p. We may thus
conclude that the Weingarten map of a submanifold M ⊆ Sn−1 coincides with the
Weingarten map of the corresponding conic manifold M̂ except for the additional
cone direction, which lies in the kernel of the Weingarten map of M̂ .
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Remark 4.1.5. Let M ⊂ Rn be a smooth manifold such that M ⊆ ∂K for some
convex set K, and let η ∈ T⊥p M for some p ∈M . If additionally −η ∈ Np(K) (note
that the normal vectors in Np(K) point outwards K), then the Weingarten map
Wp,η of M at p in direction η is positive semidefinite. See for example [49, Sec. 2.5].

The elementary symmetric functions in the principal curvatures will play a
prominent role in the tube formulas. Denoting d := dimM , we define

σi(p, η) := ith elementary symmetric function in κ1(p, η), . . . , κd(p, η)

=
∑

1≤j1<...<ji≤d

κj1(p, η) · · ·κji(p, η) . (4.2)

For i = d we have σd(p, η) = detWp,η, and this quantity is called the Gaussian
curvature of M at p in direction η. If we have a hypersurface with a (global) unit
normal vector field ν, then we also write σi(p) instead of σi(p, ν(p)).

Example 4.1.6. As a simple example let us compute the Weingarten map of the
boundary of a circular cap. More precisely, let z ∈ Sn−1 and K := B(z, β) =
{p ∈ Sn−1 | d(z, p) ≤ β} the circular cap around z of radius β ∈ (0, π). We
define M := ∂K, which is a hypersurface of Sn−1. This hypersurface has a global
unit normal vector field ν given by the unit normal vectors pointing inwards K.
To compute the principal curvatures κ1(p), . . . , κn−2(p) at p ∈ M , let ζ ∈ TpM ,
‖ζ‖ = 1. By making a change of basis in Rn we may assume without loss of
generality that z = e1, p = cos(β) e1 + sin(β) e2 and ζ = e3, where ei ∈ Rn denotes
the ith canonical basis vector. By this choice of basis, the normal vector ν(p) is
given by ν(p) = sin(β) e1 − cos(β) e2. Consider the rotation

Q(ρ) :=


1

cos(ρ) − sin(ρ)
sin(ρ) cos(ρ)

1

. . .
1

 .

Then c : R→M , t 7→ Q
(

t
sin β

)
· p, describes a curve in M through p with

dc
dt (0) = 1

sin β · Q̇(0) p = e3 = ζ .

A normal extension of ν(p) along c is given by

w(t) := Q
(

t
sin β

)
· ν(p)

= (sin(β),− cos(β) · cos( t
sin β ),− cos(β) · sin( t

sin β ), 0, . . . , 0)T ,

and we get dw
dt (0) = − cot(β) · e3 = − cot(β) · ζ, which implies (cf. Lemma 4.1.4)

Wp(ζ) = cot(β) · ζ. Since this holds for any ζ ∈ TpM with ‖ζ‖ = 1, we get

κ1(p) = . . . = κn−2(p) = cot(β) for all p ∈M ,

and σi(p) =
(
n−2
i

)
· cot(β)i.

For β = π
2 we have M ∈ Sn−2(Sn−1) and, as cos(π2 ) = 0, the Weingarten map

of M is the zero map. This also holds for subspheres of higher codimension, which
is seen in the following way. For S ∈ Sk(Sn−1) and p ∈ S, let η ∈ T⊥p S and
L := lin{S, η}. The linear subspace L has dimension k + 2, and by replacing the
euclidean space Rn by L, and Sn−1 by L ∩ Sn−1, we can reduce the general case
to the codimension-1 case. In summary, the Weingarten map of a subsphere of
the unit sphere is the zero map, i.e., a subsphere has no curvature relative to the
surrounding unit sphere.
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In the following lemma we compute the tangent spaces of the normal bundle
T⊥M ⊂ Rn × Rn, where M ⊆ Rn is a d-dimensional manifold, and the spherical
normal bundle TSM ⊂ Sn−1 × Sn−1, if M additionally lies in Sn−1 (cf. (3.6)).

Lemma 4.1.7. Let M ⊆ Rn be a smooth d-dimensional manifold. Furthermore, let
(p, η) ∈ T⊥M , and let Wp,η : TpM → TpM denote the Weingarten map of M at p
in direction η. Then the tangent space of T⊥M at (p, η) is given by

T(p,η)T
⊥M = {(ζ,−Wp,η(ζ)) | ζ ∈ TpM} ⊕ {0} × T⊥p M . (4.3)

If additionally M ⊆ Sn−1, and if (p, η) ∈ TSM , i.e., ‖η‖ = 1 and 〈p, η〉 = 0, then
the tangent space of TSM at (p, η) is given by

T(p,η)T
SM = {(ζ,−Wp,η(ζ)) | ζ ∈ TpM} ⊕ {0} ×

(
T⊥p M ∩ p⊥ ∩ η⊥

)
. (4.4)

Note that the decompositions in (4.3) and (4.4) are orthogonal decompositions.

Proof. The right-hand side of (4.3) is a n-dimensional subspace of Rn × Rn. In
order to show the equality in (4.3) it thus suffices to show that the right-hand lies
in the tangent space T(p,η)T

⊥M .
Let ζ ∈ TpM and let c : R → M be a curve such that c(0) = p and ċ(0) = ζ.

Furthermore, let w1 : R→ Rn be a normal extension of η along c, such that ẇ1(0) ∈
TpM (cf. Lemma 4.1.3). The composite curve t 7→ (c(t), w1(t)) then describes a
curve in the normal bundle T⊥M with (c, w1)(0) = (p, η). Furthermore, we have

d
dt (c(t), w1(t))(0) = (ċ(0), ẇ1(0)) = (ζ,−Wp,η(ζ)) .

This shows that (ζ,−Wp,η(ζ) ∈ T(p,η)T
⊥M .

As for the second summand of the right-hand side in (4.3), note that T⊥p M is
a linear space so that T⊥p M coincides with the tangent space of T⊥p M at η. If
w2 : R→ T⊥p M is a curve with w2(0) = η, then we have (p, w2(t)) ∈ T⊥M for all t
and (p, w2(0)) = (p, η). Therefore, we have

d
dt (p, w2(t))(0) = (0, ẇ2(0)) ∈ T(p,η)T

⊥M .

This shows that {0}×T⊥p M ⊂ T(p,η)T
⊥M , and thus finishes the proof of the equality

in (4.3).
As for the claim about the spherical normal bundle we now additionally assume

‖η‖ = 1 and 〈p, η〉 = 0. Furthermore, let M̂ := {λ p | λ > 0, p ∈ M} denote the
conic manifold corresponding to M . Note that

T⊥q M̂ = T⊥q M ∩ q⊥ for all q ∈M . (4.5)

As above, it suffices to show that the right-hand side of (4.4) lies in the tangent
space of TSM in (p, η).

For ζ ∈ TpM we consider a curve c : R → M such that c(0) = p and ċ(0) = ζ.
The normal direction η ∈ T⊥p M also lies in T⊥p M̂ , as 〈p, η〉 = 0. Let w1 : R → Rn

be a normal extension of η along c w.r.t. M̂ , i.e., w1(0) = η and w1(t) ∈ T⊥c(t)M̂ .

By Lemma 4.1.3 we may choose w1 such that ẇ1(0) ∈ TpM̂ . Furthermore, if the
domain of the curve c is shrinked to a sufficiently small interval around 0, then we
may choose w1 such that additionally ‖w1(t)‖ = 1 for all t (cf. Lemma 4.1.3). The
resulting composite curve t 7→ (c(t), w1(t)) then describes a curve in the spherical
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normal bundle TSM by (4.5). Denoting by Ŵp,η the Weingarten map of M̂ at p in
direction η, we get

d
dt (c(t), w1(t))(0) = (ζ, ẇ1(0)) = (ζ,−Ŵp,η(ζ)) = (ζ,−Wp,η(ζ)) .

This shows that (ζ,−Wp,η(ζ)) ∈ T(p,η)T
SM .

As for the second summand of the right-hand side in (4.4), note that T⊥p M ∩
p⊥ ∩ η⊥ is the tangent space of T⊥p M ∩ p⊥ ∩ Sn−1 at η. So the only change of the
proof of (4.3) consists in restricting the co-domain of the curve w2 and to consider
w2 : R → T⊥p M ∩ p⊥ ∩ Sn−1. The same reasoning as above shows the equality
in (4.4). 2

We finish this section with a lemma that will be an essential part of the compu-
tations in Section 6.3.

Lemma 4.1.8. Let M ⊂ Sn−1 be a hypersurface of the unit sphere, let M̂ := {λ p |
λ > 0, p ∈ M} be the corresponding conic hypersurface of Rn, and let ν be a unit
normal field of M̂ . Furthermore, let c : R → M be a smooth curve, let ζ1, . . . , ζn−2

be an orthonormal basis of TpM , where p := c(0), and let vi : R→ Rn be the parallel
transport w.r.t. M of ζi along c, i = 1, . . . , n− 2. Then Q : R→ Rn×n, given by

Q(t) :=
(
c(t) v1(t) · · · vn−2(t) ν(c(t))

)
,

satisfies Q(t) ∈ O(n) for all t ∈ R. Furthermore,

Q̇(0) = Q(0) ·


0 −a1 · · · −an−2 0
a1 0 · · · 0 −b1
...

...
...

...
an−2 0 · · · 0 −bn−2

0 b1 · · · bn−2 0

 ,

with

ċ(0) =
n−2∑
i=1

ai · ζi and Wp(ċ(0)) =
n−2∑
i=1

bi · ζi ,

where Wp denotes the Weingarten map of M at p.

Proof. By Theorem 4.1.1 we have that v1(t), . . . , vn−2(t) is an orthonormal basis of
Tc(t)M . Furthermore, as TqSn−1 = q⊥, we have 〈c(t), vi(t)〉 = 0, and as ν(c(t)) ∈
T⊥c(t)M̂ , we have 〈vi(t), ν(c(t))〉 = 0 for all t ∈ R. Finally, we have 〈c(t), ν(c(t))〉 = 0,

as M̂ is a conic manifold, which implies c(t) ∈ Tc(t)M̂ . This shows that Q(t) ∈ O(n)
for all t ∈ R.

As Q describes a curve in O(n), it follows that dQ
dρ (0) = Q(0) · U with skew-

symmetric U ∈ Rn×n, i.e., UT = −U (cf. Section 5.2). As ċ(0) =
∑n−2
i=1 ai · ζi, the

first column of U is given by (0, a1, . . . , an−2, 0)T , and by skew-symmetry this also
gives us the first row. The zero matrix in the middle follows from the fact that
the ζi are parallel transported along c. Finally, the last column of U follows from
Lemma 4.1.4, and the last row follows again from skew-symmetry. 2

4.1.2 Smooth caps

In this section we will consider convex sets with smooth boundaries. We will treat
the question of approximation by these sets and we will compute the curvature of
tubes around them.
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Figure 4.1: Illustration for the proof of Proposition 4.1.10.

Definition 4.1.9. For n ≥ 2 the set of smooth convex bodies is defined as

Ksm(Rn) :=
{
K ∈ K(Rn)

∣∣∣∣ int(K) 6= ∅ and ∂K is a smooth hypersurface
in Rn with nowhere vanishing Gaussian curvature

}
.

Analogously, for n ≥ 3 the set of smooth caps is defined as

Ksm(Sn−1) :=

K ∈ K(Sn−1)

∣∣∣∣∣∣
K ∈ Kr(Sn−1) and ∂K is a smooth
hypersurface in Sn−1 with nowhere

vanishing Gaussian curvature


(cf. Definition 3.3.5 for the definition of Kr(Sn−1)).

For K ∈ Ksm(Sn−1), M := ∂K, we denote by ν : M → Rn the unit normal field
pointing inwards the cap K. This is well-defined, by the following arguments. The
normal cone is contained in the 1-dimensional normal space, i.e., Np(K) ⊆ T⊥p M ,
for p ∈M . For η ∈ Np(K) \ {0} we have 〈η, q〉 ≤ 0 for all q ∈ K. Moreover, as the
interior of K is by definition non-empty, there exists q0 ∈ K such that 〈η, q〉 < 0.
This implies that Np(K) is a half-line, and there exists a unique element η ∈ Np(K)
of length 1. The direction ν(p) is defined to be the vector −η, so that 〈ν(p), q〉 ≥ 0
for all q ∈ K.

Proposition 4.1.10. The set of smooth convex bodies lies dense in the set of convex
bodies and the set of smooth convex caps lies dense in the set of convex caps, i.e.,

Ksm(Rn)
d
⊂ K(Rn) , Ksm(Sn−1)

d
⊂ Kc(Sn−1) .

Proof. The euclidean statement is originally due to Minkowski (cf. [7, §6]). See [48]
for a more recent proof. We will only deduce the spherical from the euclidean
statement.

First of all, every K ∈ Kc(Sn−1) can be approximated by a sequence (Ki)i in
Kc(Sn−1) such that all Ki lie in a fixed open half-space. This is seen in the following
way. Let v ∈ K̆ such that −v 6∈ K̆ (cf. Remark 3.2.6), and let Hi := B(−v, ρi) the
circular cap of radius ρi around −v, with ρi := π

2 −
1
i . Then we define Ki := Hi∩K.

The fact that −v 6∈ K̆ implies that K 6⊂ v⊥, and thus Ki 6= ∅ for large enough i.
Furthermore, being the intersection of two convex sets, Ki is again convex. So we
get Ki ∈ Kc(Sn−1) for all large enough i, and every Ki lies in the open half-space
{x | 〈x, v〉 < 0}. As Ki ⊆ K and K ⊆ T (Ki,

1
i ), we also have Ki → K in the

Hausdorff metric.
So we may assume w.l.o.g. that K ∈ Kc(Sn−1) lies in an open half-space H =

{x | 〈x, v〉 < 0}. Let L := {x | 〈x, v〉 = −1} denote the affine hyperplane through −v
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that is orthogonal to v, and let K̄ := C ∩ L, where C := cone(K). See Figure 4.1
for a small display. If ϕ : L → Rn−1 denotes a linear isometry, then we get that
Ke := ϕ(K̄) is a convex body in Rn−1, i.e., Ke ∈ K(Rn−1). By the euclidean
statement of the proposition we can find smooth convex bodies Ke

i ∈ Ksm(Rn−1)
such that Ke

i → Ke. We define

K̄i := ϕ−1(Ke
i ) , Ci := cone(K̄i) , Ki := Ci ∩ Sn−1 .

Then we have Ki ∈ Kc(Sn−1), and the boundary of Ki is smooth. From the
approximation property Ke

i → Ke it follows that Ki → K, which is verified easily.
It remains to show that the Gaussian curvature of ∂Ki does not vanish.

If the Gaussian curvature of ∂Ki vanishes in p ∈ ∂Ki, then the Weingarten
map of ∂Ki in p has a nontrivial kernel. This implies that the Weingarten map
of ∂Ci \ {0} in p has a kernel of dimension at least 2, as the cone direction adds
a dimension to the kernel of the Weingarten map. It follows that the Weingarten
map of ∂K̄i at x, where {x} = L ∩ R · p, has a nontrivial kernel, as the dimension
can drop at most by 1. But this means that the Gaussian curvature of K̄i vanishes
at x, which contradicts the assumption on Ke

i and thus finishes the proof. 2

The following proposition summarizes the most important properties of smooth
caps.

Proposition 4.1.11. 1. If K ∈ Ksm(Sn−1) then also K̆ ∈ Ksm(Sn−1).

2. Let K ∈ Ksm(Sn−1), and let p ∈ ∂K. Then we have ν(p)⊥ ∩K = {p} and the
map p 7→ −ν(p) describes a diffeomorphism between the boundary of K and
the boundary of its dual K̆.

3. Let K ∈ Ksm(Sn−1), p ∈ ∂K, and let κ1, . . . , κn−2 denote the principal curva-
tures of ∂K in p. Then the principal curvatures of K̆ at −ν(p) are given by
κ−1

1 , . . . , κ−1
n−2.

We will deduce this proposition from the following lemma.

Lemma 4.1.12. Let M ⊂ Sn−1 be a smooth hypersurface of Sn−1 with unit nor-
mal vector field ν : M → T⊥M and with principal curvatures κ1(p), . . . , κn−2(p) at
p ∈M . Furthermore, for α ∈ R let fα : M → Sn−1 be given by

fα(p) := cos(α) · p− sin(α) · ν(p) ,

and let the image of fα be denoted by Mα. If fα is injective, and if for all p ∈M

n−2∏
i=1

(cos(α) + sin(α) · κi(p)) 6= 0 ,

then Mα is a smooth hypersurface of Sn−1. In this case, the tangent space of Mα

at fα(p) coincides with the tangent space of M at p, and the map να : Mα → Sn−1,
να(fα(p)) := cos(α) · ν(p) + sin(α) · p, is a unit normal field of Mα. Furthermore,
if ζ ∈ TpM is a principal direction of M at p with principal curvature κ, then ζ
is a principal direction of Mα at fα(p) with principal curvature (w.r.t. the normal
field να)

cos(α) · κ− sin(α)
cos(α) + sin(α) · κ

.
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Proof. In order to show that Mα is a smooth manifold we use the inverse function
theorem. As the map fα is injective, it suffices to show that the derivative Dpfα has
full rank for all p ∈M . Let p ∈M and let ζ ∈ TpM be a principal direction w.r.t. the
principal curvature κ. Recall that by Lemma 4.1.4 we have Dpν(ζ) = −Wp(ζ),
where Wp denotes the Weingarten map of M in p. Thus, using the linearity of the
directional derivative, we get

Dpfα(ζ) = cos(α) ·Dp id(ζ)− sin(α) ·Dpν(ζ)
= cos(α) · ζ − sin(α) · (−Wp(ζ))
= (cos(α) + sin(α) · κ) · ζ . (4.6)

Since cos(α) + sin(α) · κ 6= 0, and as this holds for all principal curvatures at p, we
get that Wp has full rank, and thus, by the inverse function theorem, that Mα is a
smooth hypersurface of Sn−1.

The fact that the tangent space of Mα at fα(p) coincides with TpM follows
from (4.6) and the fact that one can chose a basis of TpM consisting of principal
directions. The fact that the normal space of Mα at fα(p) is spanned by να(p)
follows from the properties 〈να(p), fα(p)〉 = 0 and 〈να(p), ζ〉 = 0 for all ζ ∈ TpM .
Hence, να defines a unit normal field on Mα.

As for the claim about the principal curvatures of Mα, let again ζ ∈ TpM be a
principal direction w.r.t. the principal curvature κ, and let cα(t) := fα(c(t)), where
c : R → M is a curve with c(0) = p and ċ(0) = ζ. If we denote w(t) := ν(c(t)),
we have ẇ(0) = Dpν(ζ) = −Wp(ζ) = −κ ζ. Furthermore, (4.6) yields ċα(0) =
(cos(α) + sin(α) · κ) · ζ. If we denote

wα(t) := να(cα(t)) = cos(α) · w(t) + sin(α) · c(t) ,

then we get

−ẇα(0) = − cos(α) · ẇ(0)− sin(α) · ċ(0)
= cos(α) · κ · ζ − sin(α) · ζ

=
cos(α) · κ− sin(α)
cos(α) + sin(α) · κ

· ċα(0) .

This shows the claim about the principal curvatures of Mα and thus finishes the
proof. 2

Proof of Proposition 4.1.11. To ease the notation, let M := ∂K. The map

f : M → Sn−1 , p 7→ −ν(p) ,

is injective by the following arguments. Assume that p1, p2 ∈ M , p1 6= p2, with
ν(p1) = ν(p2) =: η. As K lies in an open half-space we also have p1 6= −p2, and
there is a unique geodesic arc geod(p1, p2) between p1 and p2. This geodesic arc
is contained in K by the convexity of K. Furthermore, K lies in the half-space
{x ∈ Rn | 〈x, η〉 ≥ 0}. The geodesic arc geod(p1, p2) ⊂ lin{p1, p2} lies in the
hyperplane η⊥. This implies geod(p1, p2) ⊂ ∂K = M . Moreover, ν(p) = η for all
p ∈ geod(p1, p2). This implies that the Gaussian curvature is zero along this arc,
which contradicts the assumption K ∈ Ksm(Sn−1).

The image of f lies in K̆, as −ν(p) ∈ Np(K) ⊆ C̆, where C := cone(K)
(cf. Proposition 3.1.5). Moreover, we have NS

p (K) = p⊥ ∩ K̆ = {−ν(p)}, so that
f(p) lies in the boundary ∂K̆ =: M̆ . Therefore, reducing the co-domain of f and
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identifying the resulting map with f , we have an injective map f : M → M̆ . This
map is also surjective by the following arguments. The dual of C̆ is again the primal
cone C, i.e., (C̆ )̆ = C (cf. [47, Cor. 11.7.2]). Therefore, for η ∈ M̆ = ∂K̆ there
exists p ∈ NS

η (K̆) ⊆ K. As 〈η, p〉 = 0, we have η = −ν(p) = f(p). This shows that
the map f is surjective.

Applying Lemma 4.1.12 with α = π
2 (note that f = fπ/2), we get that M̆ is a

smooth hypersurface of Sn−1. This proves part (2) of the claim.
Furthermore, Lemma 4.1.12 implies that the principal curvatures of M̆ at f(p)

are given by −κ−1
1 (p), . . . ,−κ−1

n−2(p), where the corresponding unit normal field is
given by f(p) 7→ p. This normal field points outwards the cap K̆, so that the
principal curvatures at f(p) w.r.t. the unit normal field pointing inwards K̆ are
given by κ−1

1 (p), . . . , κ−1
n−2(p). This proves part (3) of the claim.

The first part of the claim follows from K ∈ Kr(Sn−1) ⇐⇒ K̆ ∈ Kr(Sn−1)
(cf. Section 3.3), and part (3). 2

We finish this section with another corollary from Lemma 4.1.12 about the max-
imum radius α0 for which the tube T (K,α0) around a smooth cap K ∈ Ksm(Sn−1)
is still convex. The idea is to use the fact that the boundary of a convex cap, if it is
a smooth submanifold of Sn−1, always has a positive semidefinite Weingarten map
(cf. Remark 4.1.5). From Lemma 4.1.12 we get a formula for the Weingarten map
of the boundary of a tube. So as soon as this fails to be positive semidefinite, the
tube cannot be convex.

Corollary 4.1.13. Let K ∈ Ksm(Sn−1) and let α0 := sup{α | T (K,α) ∈ K(Sn−1)}.
Then

α0 ≤ arctan(min{κmin(p) | p ∈M}) , (4.7)

where M := ∂K, and κmin(p) denotes the minimum principal curvature of M at p.

Proof. We first show that for 0 ≤ α < π
2 the map fα : M → Sn−1 given by fα(p) =

cos(α)·p−sin(α)·ν(p) (cf. Lemma 4.1.12) is a bijection between M and the boundary
of T (K,α). If C := cone(K) denotes the cone defined by K, then the (euclidean)
projection map ΠC : Rn → C satisfies

Π−1
C (p) = p− R ν(p)

for all p ∈ M ⊂ ∂C (cf. Section 3.1). This implies that for 0 ≤ α < π
2 we have

ΠC(fα(p)) = cos(α)·p, and thus d(fα(p),K) = α, i.e., fα(p) ∈ ∂T (K,α). Moreover,
any point pα ∈ ∂T (K,α) is of the form pα = fα(p), and fα(p) = fα(q) implies p = q,
since p = cos(α)−1 ·ΠC(fα(p)).

Lemma 4.1.12 thus implies that Mα := T (K,α) is a smooth hypersurface if

cos(α) + sin(α) · κi(p) 6= 0 for all 1 ≤ i ≤ n− 2, p ∈M ,

where κ1(p), . . . , κn−2(p) denote the principal curvatures of M at p. In this case,
the map fα : M → Mα is a diffeomorphism and the principal curvatures of Mα at
fα(p) are given by (cos(α) ·κi(p)− sin(α))/(cos(α) + sin(α) ·κi(p)), i = 1, . . . , n− 2.

As M is the boundary of the smooth cap K, the Weingarten map of M is
positive definite at each point (cf. Remark 4.1.5 and Definition 4.1.9). This implies
that cos(α) + sin(α) · κi(p) > 0 for all i = 1, . . . , n − 2, p ∈ M , 0 ≤ α < π

2 . In
particular, Mα is a smooth hypersurface for all 0 ≤ α < π

2 .
If T (K,α) is convex, then the Weingarten map of Mα is positive semidefinite

(cf. Remark 4.1.5), i.e.,

cos(α) · κi(p)− sin(α)
cos(α) + sin(α) · κi(p)

≥ 0 for all p ∈M , i = 1, . . . , n− 2.
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This is equivalent to α ≤ arctan(min{κmin(p) | p ∈M}) < π
2 . 2

Remark 4.1.14. We believe that the inequality for α0 in (4.7) is an equality. The
missing argument for a proof of this equality is that the positive semidefiniteness
of the Weingarten map implies convexity. Theorems of this kind are known for the
euclidean case (cf. [49, Sec. 5]). The transition to the spherical setting should be
doable as in the proof of Proposition 4.1.10.

4.1.3 Integration on submanifolds of Rn

In this section we will describe integration on submanifolds of euclidean space.
Later, in Section 5.1, we will describe integration on general Riemannian manifolds,
but as we need to know about integration on submanifolds of Rn for Weyl’s tube
formulas, we will treat this special case already at this point. The basic facts that
we state in the following paragraphs can be found for example in [52, Ch. 3]. As a
first application we will compute the volume of tubes around subspheres of the unit
sphere.

Let M ⊆ Rn be a smooth submanifold of dimension d, and let ϕ : Rd → M be
a smooth parametrization of an open subset U := im(ϕ) ⊆ M , i.e., ϕ is a smooth
diffeomorphism. Denoting by Dxϕ : Rd → Tϕ(x)M the derivative of ϕ in x ∈ Rd,
the integral of an integrable function f : M → R over U is defined via∫

y∈U

f(y) dM :=
∫
x∈Rd

f(ϕ(x)) · | det(Dxϕ)| dx . (4.8)

It is essential that the definition in (4.8) is independent of the chosen parametriza-
tion ϕ of M , i.e.,∫

x∈Rd

f(ϕ(x)) · | det(Dxϕ)| dx =
∫
x∈Rd

f(ψ(x)) · | det(Dxψ)| dx ,

if ψ : Rd → M is another smooth parametrization with im(ψ) = U . This follows
from the transformation theorem (cf. for example [52, Thm. 3-13]).

More generally, let (Ui)i be a sequence of open subsets of M which cover M , and
let (ϕi)i be a partition of unity subordinate to the open cover (Ui)i. This means
that the ϕi : M → [0, 1] are smooth functions with ϕi(p) = 0 for p 6∈ Ui, such that
for every p ∈M there exists a neighborhood U of p, such that all but a finite number
of ϕi are zero on U , and

∑∞
i=1 ϕi(p) = 1. If f : M → R is an integrable function,

then the integral of f over M is defined via∫
M

f dM :=
∞∑
i=1

∫
Ui

f · ϕi dUi .

See [52, Ch. 3] for the details of this definition. The d-dimensional volume of M is
defined via

voldM :=
∫
M

1 dM .

This notion of volume coincides with the usual (Lebesgue) volume on Rd if M is an
open subset of Rd.
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An important tool in our computations will be the smooth coarea formula. Before
we can state this we need to define the Normal Jacobian of a (surjective) linear
operator.

If A : V → W is a surjective linear operator between euclidean vector spaces V
and W of dimensions n := dimV ≥ dimW =: d, then the Normal Jacobian of A is
defined as

ndet(A) := |det(A|ker(A)⊥)| , (4.9)

where A|ker(A)⊥ denotes the restriction of A to the orthogonal complement of the
kernel of A. Obviously, if m = n then ndet(A) = |det(A)|, so the Normal Jacobian
provides a natural generalization of the absolute value of the determinant.

Lemma 4.1.15 (Coarea Formula). Let M1,M2 ⊆ Rn be smooth submanifolds of Rn,
and let ϕ : M1 →M2 be a smooth map such that Dxϕ : TxM1 → Tϕ(x)M2 is surjec-
tive for almost all x ∈M1. Then for all integrable functions f : M1 → R∫

x∈M1

f(x) dM1 =
∫

y∈M2

∫
x∈ϕ−1(y)

f(x)
ndet(Dxϕ)

dϕ−1(y) dM2 , (4.10)

∫
x∈M1

f(x) · ndet(Dxϕ) dM1 =
∫

y∈M2

∫
x∈ϕ−1(y)

f(x) dϕ−1(y) dM2 . (4.11)

In particular, if ϕ : M1 →M2 is a diffeomorphism and g : M2 → R integrable, then∫
x∈M1

g(ϕ(x)) · | det(Dxϕ)| dM1 =
∫

y∈M2

g(y) dM2 . (4.12)

Proof. See [37, 3.8] and [26, 3.2.11]. 2

Remark 4.1.16. The inner integrals in (4.11) over the fiber ϕ−1(y) are well-defined
for almost all y ∈M2. This follows from Sard’s lemma (cf. for example [52, Thm. 3-
14]), which implies that almost all y ∈ M2 are regular values, i.e., the differential
Dxϕ has full rank for all x ∈ ϕ−1(y). The fibers ϕ−1(y) of regular values y are
smooth submanifolds of M1 and therefore the integral over ϕ−1(y) is well-defined.

The following lemma is an important step for the proof of Weyl’s tube formula.
Recall from Section 3.3 that the normal bundle T⊥M ⊂ Rn × Rn of a smooth
manifold M ⊆ Rn is a manifold of dimension n. Furthermore, we have a canonical
projection P : T⊥M →M , P : (p, η) 7→ p (cf. Remark 3.3.8). In the following lemma
we compute the Normal Jacobian of the derivative of this projection. Recall that
we have computed the tangent spaces of the (unit) normal bundle in Lemma 4.1.7.

Lemma 4.1.17. Let M ⊆ Rn be a smooth manifold of dimension d := dimM ,
and let P : T⊥M → M denote the canonical projection P : (p, η) 7→ p. Then for
(p, η) ∈ T⊥M the Normal Jacobian of D(p,η)P is given by

ndet(D(p,η)P ) =
d∏
i=1

(
1 + κi(p, η)2

)− 1
2 ,

where κ1(p, η), . . . , κd(p, η) denote the principal curvatures of M at p in direction η.
If additionally M ⊆ Sn−1, and if P ′ : TSM → M denotes the canonical projection
of the spherical normal bundle, then

ndet
(
D(p,η)P

′) = ndet(D(p,η)P )

for all (p, η) ∈ TSM .
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Proof. In Lemma 4.1.7 it was shown that the tangent space of T⊥M at (p, η) is
given by T(p,η)T

⊥M = L1 ⊕ L2 with

L1 := {(ζ,−Wp,η(ζ)) | ζ ∈ TpM} , L2 := {0} × T⊥p M ,

where Wp,η : TpM → TpM denotes the Weingarten map of M at p in direction η.
Note that L1 ⊥ L2. Furthermore, we clearly have

D(p,η)P (ξ1, ξ2) = ξ1 , for (ξ1, ξ2) ∈ T(p,η)T
⊥M ⊂ Rn × Rn .

This implies that

kerD(p,η)P = L2 , (kerD(p,η)P )⊥ = L1 .

To define a basis in L1, let ζ1, . . . , ζd ∈ TpM be an orthonormal basis consisting
of principal directions, i.e., Wp,η(ζi) = κi(p, η) · ζi, i = 1, . . . , d. The corresponding
vectors (ζi,−κi · ζi), i = 1, . . . , d, provide an orthogonal basis of L1 of lengths
‖(ζi,−κi · ζi)‖ =

√
1 + κi(p, η)2. Furthermore, this orthogonal basis is mapped

onto the orthonormal basis ζ1, . . . , ζd of TpM . It follows that the Normal Jacobian
of D(p,η)P is given by

ndet(D(p,η)P ) =
d∏
i=1

(
1 + κi(p, η)2

)− 1
2 .

The claim about the spherical normal bundle follows analogously. 2

As a first example for the usefulness of the coarea formula, we will compute the
volume of tubes around subspheres of Sn−1. Throughout this paper we use the
notation

Ok := volk Sk =
2π

k+1
2

Γ(k+1
2 )

(4.13)

On−1,k(α) := voln−1 T (S, α) , (4.14)

where S ∈ Sk(Sn−1), and 0 ≤ α ≤ π
2 . Note that we have

(k − 1) · Ok
Ok−2

= (k − 1) · 2π
k+1
2

k−1
2 · Γ(k−1

2 )
·

Γ(k−1
2 )

2π
k−1
2

= 2π . (4.15)

Proposition 4.1.18. The volume of the α-tube, 0 ≤ α ≤ π
2 , around a subsphere

S ∈ Sk(Sn−1), 0 ≤ k ≤ n− 2, is given by

On−1,k(α) = Ok · On−2−k ·
∫ α

0

cos(ρ)k · sin(ρ)n−2−k dρ .

Furthermore, the volume of a circular cap B(z, β) of radius β ∈ [0, π] is given by

volB(z, β) = On−2 ·
∫ β

0

sin(ρ)n−2 dρ .

Proof. Using the continuity of both sides we may assume w.l.o.g. 0 < α < π
2 . Let

S ∈ Sk(Sn−1), and consider the open subset

Tα := T (S, α) \ (S ∪ ∂T (S, α)) .
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of Sn−1. Note that T (S, α) \ Tα is a nullset, so that we have vol T (S, α) = vol Tα.
Furthermore, we have a differentiable bijection

ϕ : S × S⊥ × (0, α) → Tα
(p, q, ρ) 7→ cos(ρ) · p+ sin(ρ) · q .

In order to compute the determinant of the derivative, let ζ ∈ TpS and η ∈ TqS⊥.
Note that ζ and η are orthogonal to p and q. We have

D(p,q,ρ)ϕ(ζ, 0, 0) = cos(ρ) · ζ
D(p,q,ρ)ϕ(0, η, 0) = sin(ρ) · η
D(p,q,ρ)ϕ(0, 0, 1) = − sin(ρ) · p+ cos(ρ) · q .

Note that the vector − sin(ρ) · p+ cos(ρ) · q has unit length and it is orthogonal to
the vectors ζ and η. Therefore, we get

|det(D(p,q,ρ)ϕ)| =

∣∣∣∣∣∣det

cos(ρ) · Ik
sin(ρ) · In−2−k

1

∣∣∣∣∣∣
= cos(ρ)k · sin(ρ)n−2−k .

From (4.12) applied to ϕ we get

On−1,k(α) = vol Tα =
∫
Tα

1 dSn−1

=
∫

S×S⊥×(0,α)

cos(ρ)k · sin(ρ)n−2−k d(S × S⊥ × (0, α))

= volS · volS⊥ ·
∫ α

0

cos(ρ)k · sin(ρ)n−2−k dρ .

The claim about the circular caps follows analogously by taking k = 0 and replacing
the 0-subsphere, which consists of a pair of antipodal points, by a single point. 2

Corollary 4.1.19. For k, ` ∈ N we have∫ π
2

0

cos(ρ)k · sin(ρ)` dρ =
Ok+`+1

Ok · O`
.

Proof. Let S ∈ Sj(Sn−1) be a subsphere of Sn−1. The complement of the open
tube of radius π

2 around S is given by S⊥, which is a nullset. Therefore, we have

On−1 = On−1,j(π2 ) = Oj · On−2−j ·
∫ π

2

0

cos(ρ)j · sin(ρ)n−2−j dρ

by Proposition 4.1.18. The claim follows by choosing j := k and n := k+ `+ 2. 2

4.1.4 The binomial coefficient and related quantities

In the previous section we already encountered the quantity Ok = volk Sk in (4.13).
In this section we will present related quantities that will come up in the compu-
tations, and we will state and prove some properties and identities between them.
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This collection will prove useful in the subsequent sections, but it may safely be
skipped on a first reading.

Central to all the quantities, that we will deal with, is the Γ-function, which
we consider as a function Γ: R>0 → R>0. In the following we summarize some
(well-known) properties of the Γ-function that we will make use of (cf. [1, § 6.1]):

1. For x ∈ R>0 we have Γ(x+ 1) = x · Γ(x).

2. We have Γ(1) = 1 and Γ(n) = (n − 1)! for n ∈ Z>0. Furthermore, we have
Γ( 1

2 ) =
√
π.

3. The function R>0 → R, x 7→ ln(Γ(x)), is convex. This is equivalent to the
inequality

Γ(x)2 ≤ Γ(x− c) · Γ(x+ c) ,

for x, c ∈ R, x > |c|.

4. For x ∈ R>0 we have the duplication formula

Γ(2x) = 1√
π
· 22x−1 · Γ(x) · Γ(x+ 1

2 ) . (4.16)

5. For x ∈ R>0 we have the estimate

Γ(x+ 1
2 ) <

√
x · Γ(x) . (4.17)

This estimate is asymptotically sharp, i.e., Γ(x+ 1
2 ) ∼

√
x · Γ(x) for x → ∞,

where f(x) ∼ g(x) means f(x)
g(x) → 1 for x→∞.

Besides the volume of the kth unit sphere, we will come across the volume of
the kth unit ball Bk ⊂ Rk. We denote this by

ωk := volk Bk =
Ok−1

k
=

π
k
2

Γ(k+2
2 )

for k > 0, and put ω0 := 1 .

It is convenient for us to extend the binomial coefficient with the help of the
Γ-function to also include half-integers.1 For n,m ∈ Z, −1 ≤ m ≤ n+ 1, we define(

n/2
m/2

)
:=

Γ(n+2
2 )

Γ(m+2
2 ) · Γ(n−m+2

2 )
. (4.18)

Furthermore, besides the binomial coefficient we define the flag coefficients [ nm ] for
n,m ∈ N, n ≥ m, via [

n
m

]
:=

√
π · Γ(n+1

2 )
Γ(m+1

2 ) · Γ(n−m+1
2 )

. (4.19)

These coefficients were defined in [36, Ch. 6], and they can be interpreted as con-
tinuous analogues of the binomial coefficients. The following proposition provides
some identities between the binomial coefficient and the flag coefficients.

1Note that we might as well extend the binomial coefficient to a function R × R → [−∞,∞]

via (x, y) 7→
`x
y

´
=

Γ(x+1)
Γ(y+1)·Γ(x−y+1)

. The restriction to half-integers is only for convenience, as we

will only need these values.
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Proposition 4.1.20. 1. For n,m ∈ N, n ≥ m,(
n

m

)
=

√
π · Γ(n+1

2 ) · Γ(n+2
2 )

Γ(m+1
2 ) · Γ(m+2

2 ) · Γ(n−m+1
2 ) · Γ(n−m+2

2 )
. (4.20)

In particular, (
n

m

)
=
[
n
m

]
·
(
n/2
m/2

)
. (4.21)

2. For n,m ∈ N, n ≥ m,(
n/2
m/2

)
=
ωm · ωn−m

ωn
,

[
n
m

]
=
Om · On−m

2 · On
. (4.22)

In particular, (
n

m

)
· ωn
ωm · ωn−m

=
[
n
m

]
, (4.23)

(
n

m

)
· 2 · On
Om · On−m

=
(
n/2
m/2

)
. (4.24)

3. For n,m→∞ such that also (n−m)→∞[
n
m

]
∼
√
π

2
·
√
m(n−m)

n
·
(
n/2
m/2

)
. (4.25)

Proof. Equation (4.20) follows from the duplication formula of the Γ-function via(
n

m

)
=

Γ(n+ 1)
Γ(m+ 1) · Γ(n−m+ 1)

=
1√
π
· 2n · Γ(n+1

2 ) · Γ(n+2
2 )

1√
π
· 2m · Γ(m+1

2 ) · Γ(m+2
2 ) · 1√

π
· 2n−m · Γ(n−m+1

2 ) · Γ(n−m+2
2 )

=
√
π · Γ(n+1

2 ) · Γ(n+2
2 )

Γ(m+1
2 ) · Γ(m+2

2 ) · Γ(n−m+1
2 ) · Γ(n−m+2

2 )
.

Equations (4.21)–(4.24) follow from (4.20) by plugging in the definitions of the
corresponding quantities.

As for the asymptotics stated in (4.25), we compute√
π

2
·
√
m(n−m)

n
·
(
n/2
m/2

)
=
√
π

2
·
√
m(n−m)

n
·

Γ(n2 + 1)
Γ(m2 + 1) · Γ(n−m2 + 1)

=
√
π ·
√

n
2 · Γ(n2 )√

m
2 · Γ(m2 ) ·

√
n−m

2 · Γ(n−m2 )
∼

√
π · Γ(n+1

2 )
Γ(m+1

2 ) · Γ(n−m+1
2 )

=
[
n
m

]
,

where we have used the asymptotics
√
x · Γ(x) ∼ Γ(x+ 1

2 ) for x→∞. 2

We finish this section with a discussion about a particularly important property,
which is shared by many sequences that we will come across. This property is
log-concavity. Additionally, we also mention unimodality of sequences.
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Definition 4.1.21. Let (ai)i=0,...,N be a sequence of real numbers, where N ∈ N
or N =∞.

1. The sequence (ai)i is called log-concave iff a2
i ≥ ai−1 · ai+1 for all 0 < i < N .

2. The sequence (ai)i is called unimodal iff there exists 0 ≤ M ≤ N such that
a0 ≤ a1 ≤ . . . ≤ aM and aM ≥ aM+1 ≥ . . . ≥ aN .

3. A zero element of the sequence ai = 0 for some 0 < i < N is called an internal
zero iff there exist 0 ≤ j < i and i < k ≤ N such that aj 6= 0 and ak 6= 0.

Note that a sequence of positive real numbers (ai)i is log-concave iff the sequence
(ln ai)i is concave. The following proposition collects some properties of log-concave
and unimodal sequences.

Proposition 4.1.22. 1. Let (ai)i=0,...,N be a log-concave sequence of real num-
bers, where N ∈ N or N =∞. If ai > 0 for all i or if ai ≥ 0 and (ai)i has no
internal zeros, then (ai)i is a unimodal sequence.

2. If (ai)i is a log-concave sequence, then so is the sequence (
√
ai)i.

3. If (ai)i, (bi)i are log-concave sequences, then so is the product sequence (ai ·bi)i.

4. Let a0, . . . , am, b0, . . . , bn ∈ R≥0, and let (ci)i denote their convolution, i.e.,

ci :=
min{i,m}∑

k=max{0,i−n}

ak · bi−k .

(a) If (ai)i and (bi)i are log-concave sequences with no internal zeros, then
also the sequence (ci)i is log-concave and with no internal zero.

(b) If (ai)i and (bi)i are symmetric, i.e., ai = am−i and bj = bn−j for all
i and j, and if both (ai)i and (bi)i are unimodal, then also the sequence
(ci)i is symmetric and unimodal.

Proof. Parts (1)–(3) follow directly from the definition. For a proof of part (4) see
for example [54, Prop. 1 & 2]. 2

Proposition 4.1.23. The following sequences of positive numbers are log-concave:

1. For n ∈ N:

(a) [ n0 ] , [ n1 ] , . . . , [ nn ]

(b)
(
n/2
−1/2

)
,
(
n/2
0/2

)
,
(
n/2
1/2

)
, . . . ,

(
n/2

(n+1)/2

)
(c)

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
2. For m ∈ N:

(a) [mm ] , [m+1
m ] , [m+2

m ] , . . .

(b)
(
m/2
m/2

)
,
(

(m+1)/2
m/2

)
,
(

(m+2)/2
m/2

)
, . . .

(c)
(
m
m

)
,
(
m+1
m

)
,
(
m+2
m

)
, . . .

3. O0,O1,O2, . . .
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4. ω0, ω1, ω2, . . ..

Proof. All these claims follow from the log-convexity of the Γ-function. We exem-
plarily show part (1.a) of the claim:

[ ni ]2

[ n
i−1 ] · [ n

i+1 ]
=

π · Γ(n+1
2 )2

Γ( i+1
2 )2 · Γ(n−i+1

2 )2
·

Γ( i2 ) · Γ(n−i+2
2 )

√
π · Γ(n+1

2 )
·

Γ( i+2
2 ) · Γ(n−i2 )
√
π · Γ(n+1

2 )

=
Γ( i2 ) · Γ( i+2

2 )
Γ( i+1

2 )2
·

Γ(n−i+2
2 ) · Γ(n−i2 )

Γ(n−i+1
2 )2

≥ 1 ,

where the inequality follows from the log-convexity of the Γ-function. 2

See [54] for more on log-concavity in diverse areas of mathematics.

4.2 The (euclidean) Steiner polynomial

Before we make the computations in the sphere let us have a look at the euclidean
situation. As early as 1840, J. Steiner found that the volume of the tube of radius r
around a convex body K ⊂ Rn has the form of a polynomial in r. See Figure 1.1
in Section 1.3 for a 2-dimensional example, which shows that at least in dimension
n = 2 Steiner’s formula seems obvious.

The intrinsic volumes V ei (K) of K ∈ K(Rn) are defined as (scaled versions of)
the coefficients of the Steiner polynomial. More precisely,

voln T e(K, r) =
n∑
i=0

ωi · V en−i(K) · ri (4.26)

(cf. [49, Sec. 4.2]). The quantities V ei (K) are called the intrinsic volumes of K
because they do not depend on the embedding of K in Rn, i.e., considering the
convex body K ⊂ Rñ with ñ ≥ n will yield the same intrinsic volumes.

For K ∈ K(Rn) we have

V en (K) = voln(K) , V en−1(K) =
voln−1(∂K)

2
, V e0 (K) = 1 .

Furthermore, in the special case where K is a polytope, the intrinsic volumes are
given by

V ei (K) =
∑
F

voli(F ) · voln−i−1(NS
F )

On−i−1
(4.27)

(cf. [49, Sec. 4.2]), where the summation is over all i-dimensional faces F of K,
and NS

F denotes the intersection of the outer cone to K in F with the unit sphere
(cf. Section 3.1).

Example 4.2.1. As a first example, we will compute the intrinsic volumes of the n-
dimensional unit ball Bn. If Bn(r) ⊂ Rn denotes the n-dimensional ball of radius r,
then we have T e(Bn, r) = Bn(1 + r). Therefore, we get

vol T e(Bn, r) = volBn(1 + r) = (1 + r)n · ωn =
n∑
i=0

(
n

i

)
· ωn · ri ,
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which implies

V ei (Bn) =
(
n

i

)
· ωn
ωn−i

.

Note that if we define for K ∈ K(Rn) a modified version Ṽ ei of intrinsic volumes via

Ṽ ei (K) :=
V ei (K)
ωi

,

then these modified intrinsic volumes are also independent of the embedding of K
in euclidean space. Furthermore, we get by Proposition 4.1.20

Ṽ ei (Bn) =
(
n

i

)
· ωn
ωi · ωn−i

=
[
n
i

]
.

Recall that in Section 3.1.1 we have discussed the Minkowski addition in eu-
clidean space. This Minkowski addition leads to a vast generalization of intrinsic
volumes, the notion of mixed volumes. We will not need this notion as it has no direct
spherical analog. But we mention the fact that the Alexandrov-Fenchel inequality
for mixed volumes (cf. [49, Ch. 5]) implies that the sequence of (euclidean) intrinsic
volumes is always log-concave, which we formulate in the following proposition.

Proposition 4.2.2. For K ∈ K(Rn) the sequence Ṽ e0 (K), . . . , Ṽ en (K) is log-concave.
In particular, the sequence V e0 (K), . . . , V en (K) is log-concave, i.e.

V ei (K)2 ≥ V ei−1(K) · V ei+1(K) , i = 1, . . . , n− 1 .

Proof. For the sake of completeness we include the derivation from the Alexandrov-
Fenchel inequality by adopting the notation of [49, Ch. 5] and by referring to this
for the necessary definitions. From [49, (5.1.26)] we have for K1,K2 ∈ K(Rn) and
λ1, λ2 ∈ R+

voln(λ1 ·K1 + λ2 ·K2) =
n∑
i=0

(
n

i

)
· λi1 · λn−i2 · V (K1[i],K2[n− i]) ,

where V (K1[i],K2[n − i]) denotes a particular mixed volume. Choosing K1 := K
and K2 := Bn, and using T e(K, r) = K + r Bn, we get

voln T e(K, r) =
n∑
k=0

(
n

k

)
· V (K[n− k], Bn[k]) · rk .

Comparing this with the definition of the intrinsic volumes, we get

Ṽ ei (K) =
(
n

i

)
· 1
ωn−i · ωi

· V (K[i], Bn[n− i])

=
[
n
i

]
· 1
ωn
· V (K[i], Bn[n− i]) ,

where the second equality follows from Proposition 4.1.20. The Alexandrov-Fenchel
inequality (cf. [49, Sec. 6.3]) implies that for 1 ≤ i ≤ n− 1

V (K[i], Bn[n− i])2 ≥ V (K[i+ 1], Bn[n− i− 1]) · V (K[i− 1], Bn[n− i+ 1]) .
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Using this and the log-concavity of the sequence ([ ni ])i (cf. Proposition 4.1.23), we
compute for 1 ≤ i ≤ n− 1

Ṽ ei (K)2

Ṽ ei−1(K) · Ṽ ei+1(K)

=
[ ni ]2

[ n
i−1 ] · [ n

i+1 ]
· V (K[i], Bn[n− i])2

V (K[i+ 1], Bn[n− i− 1]) · V (K[i− 1], Bn[n− i+ 1])

≥ 1 .

This shows that the sequence Ṽ e0 (K), . . . , Ṽ en (K) is log-concave. The fact that
the sequence V e0 (K), . . . , V en (K) is log-concave follows from the log-concavity of
ω0, ω1, ω2, . . . and the identity V ei (K) = Ṽ ei (K) · ωi. 2

A spherical analog of Proposition 4.2.2 is unknown. We will formulate one in
Conjecture 4.4.16.

4.3 Weyl’s tube formulas

In this section we will derive formulas for the volume of the tube around a stratified
convex set in Rn or Sn−1, respectively. The coefficients occuring, i.e., the intrinsic
volumes and its spherical generalizations, turn out to be certain integrals of cur-
vature over the boundary of the convex set. These formulas are well-known and
originally due to H. Weyl, cf. [63]. The reason for us to include these computations
is that they will serve as a model for the computation in the Grassmann manifold.
Furthermore, the form in which we state these tube formulas is particularly use-
ful for the computations in Chapter B in the appendix, where we will prove some
simple calculation rules for the intrinsic volumes (cf. Section 4.4), which appear to
be new. And in Chapter C in the appendix we will use the spherical tube formula
to compute the intrinsic volumes of the semidefinite cone (cf. Section 4.4.1), which
also seems to have never been done before.

While this section is solely devoted to the derivation of the tube formulas, we
will treat in the forthcoming section the intrinsic volumes, which evolve from these
formulas. We rely in this section basically on Weyl’s original paper [63] and on the
treatment in [17] and in [12].

Before making the first definitions let us have a look at another example, similar
to the euclidean polytope in Figure 1.1. The intersection of the positive orthant Rn+
with the unit sphere Sn−1 is a spherical polytope. Figure 1.2 in Section 1.3 shows
this spherical polytope as well as the decomposition of the tube around it for the
special case n = 3.

This example shows that the volume of the tube will not be a polynomial func-
tion, but may nevertheless have a similar structure. It turns out that the only change
one has to do in the formula (4.26), is to replace the monomials rk by functions
which arise in the volume of the tube around subspheres of Sn−1.

Recall from (4.13) and (4.14) that we denote the volume of the k-dimensional
unit sphere by Ok = volk Sk, and the volume of the α-tube around a k-sphere in
Sn−1 by On−1,k(α) = voln−1 T (S, α), S ∈ Sk(Sn−1). Note that On−1,k(π2 ) = On−1.
We further use the notation

In,j(α) :=
On−1,j(α)
Oj · On−2−j

=
∫ α

0

cos(ρ)j · sin(ρ)n−2−j dρ . (4.28)
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Note that for small values of α we have approximately sin(α) ∼ α and cos(α) ∼ 1,
and thus for α→ 0

In,j(α) ∼
∫ α

0

ρn−2−j dρ = 1
n−1−j · α

n−1−j . (4.29)

So the I-functions should be thought of as spherical substitutes for the monomials,
which appear in the euclidean tube formula.

Proposition 4.3.1. Let n ≥ 2 and let ∅ 6= U ⊆ R open. Then the functions
In,j : U → R, 0 ≤ j ≤ n − 2 and the constant function 1 : U → R, 1(α) := 1, are
linearly independent.

Proof. It is easily seen that the functions cos(α)j ·sin(α)n−2−j = I ′n,j(α), are linearly
independent on an open interval. If we have a1 · 1 + a2 · In,0 + . . .+ an · In,n−2 = 0,
then a2 ·I ′n,0 + . . .+an ·I ′n,n−2 = 0 and the linear independence of I ′n,j , 0 ≤ j ≤ n−2
implies that a2 = . . . = an = 0, and therefore also a1 = 0. 2

We state Weyl’s tube formulas for (euclidean or spherical) stratified convex sets.
Recall from Definition 3.3.9 that we call a (euclidean or spherical) convex set K
stratified if it decomposes into a disjoint union of smooth connected submanifolds
of Rn resp. Sn−1 such that the duality bundles (cf. (3.8)/(3.9)) also form smooth
manifolds. The classification into essential and negligible pieces (cf. Definition 3.3.9)
is justified by the following theorem.

Theorem 4.3.2. 1. Let K ∈ K(Rn) be a stratified convex body with decomposi-

tion K =
⋃̇k̃
i=0Mi, such that M0 = intK, and such that M1, . . . ,Mk are the

essential and Mk+1, . . . ,Mk̃, k ≤ k̃, are the negligible pieces. Furthermore, let
di be the dimension of the stratum Mi. Then for r ≥ 0

voln T e(K, r) = volnK +
n−1∑
j=0

rn−j

n− j
·
k∑
i=1

∫
x∈Mi

∫
η∈NSx (K)

σ
(i)
di−j(x,−η) dη dx ,

where σ(i)
` (x,−η) denotes the `th elementary symmetric function in the prin-

cipal curvatures of Mi at x in direction −η (cf. (4.2)), and σ`(x,−η) := 0 if
` < 0.

2. Let K ∈ K(Sn−1) be a stratified spherical convex set with decomposition K =⋃̇k̃
i=0Mi, such that M0 = int(K), and such that M1, . . . ,Mk are the essential

and Mk+1, . . . ,Mk̃, k ≤ k̃, are the negligible pieces. Furthermore, let di be the
dimension of the stratum Mi. Then for 0 ≤ α ≤ π

2

voln−1 T (K,α) = voln−1K+
n−2∑
j=0

In,j(α)·
k∑
i=1

∫
p∈Mi

∫
η∈NSp (K)

σ
(i)
di−j(p,−η) dη dp ,

where σ(i)
` (p,−η) denotes the `th elementary symmetric function in the prin-

cipal curvatures of Mi at p in direction −η (cf. (4.2)), and σ`(p,−η) := 0 if
` < 0.

Note that the normal directions η ∈ NS
p point outwards K. Therefore, the

principal curvatures κi(p,−η) are nonnegative (cf. Remark 4.1.5).
Before we give the proof, let us consider the special cases of smooth and poly-

hedral caps.
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Corollary 4.3.3. Let K ∈ K(Sn−1) have a smooth boundary M := ∂K. Then for
0 ≤ α ≤ π

2

voln−1 T (K,α) = voln−1K +
n−2∑
j=0

In,j(α) ·
∫
p∈M

σn−2−j(p) dM .

Proof. Take the decomposition M0 := int(K), M1 := ∂K = M . 2

The following result for the sphere is analogous to (4.27) for euclidean space.

Corollary 4.3.4. Let K ∈ Kp(Sn−1) be a polyhedral cap and let Fj denote the set
of all j-dimensional faces of K. Then for 0 ≤ α ≤ π

2

voln−1 T (K,α) = voln−1(K) +
n−2∑
j=0

In,j(α) ·
∑
F∈Fj

volj(F ) · voln−2−j(NS
F ) .

Proof. The boundary of the polyhedral cap K has the natural stratification

∂K =
⋃̇n−2

j=0

⋃̇
F∈Fj

relint(F ) ,

where each piece is easily seen to be essential. Furthermore, as the normal cone is
constant on each of the pieces relint(F ), it follows that the corresponding duality
bundles are smooth manifolds. Since the relative interior of every face of K is an
open subset of a subsphere of Sn−1, and as the curvatures of subspheres of Sn−1

are zero, we get

σFj (p, η) =

{
0 if j > 0
1 if j = 0

,

where the superscript .F shall indicate the dependence on the face F . From Theo-
rem 4.3.2 part (2) we get

voln−1 T (K,α) = voln−1(K) +
n−2∑
j=0

∑
F∈Fj

In,j(α) ·
∫
p∈F

∫
η∈NSp

1 dNS
p dF

= voln−1(K) +
n−2∑
j=0

In,j(α) ·
∑
F∈Fj

volj(F ) · voln−2−j(NS
F ) . 2

Before we give the proof of Theorem 4.3.2 let us also compute the volume of the
tubes around circular caps and around the cap defined by the positive orthant.

Example 4.3.5. Let K = B(z, β) ⊂ Sn−1, 0 < β ≤ π/2, the circular cap of
radius β around z. In Example 4.1.6 we have seen that the principal curvatures in
p ∈ M = ∂K are given by κ1(p) = . . . = κn−2(p) = cot(β), if we choose the unit
normal field pointing inwards K. So from Corollary 4.3.3 we get

voln−1 T (K,α) = voln−1(K) +
n−2∑
j=0

In,j(α) ·
∫
p∈M

(
n− 2

n− 2− j

)
· (cotβ)n−2−j dM

= voln−1(K) +
n−2∑
j=0

In,j(α) ·
(
n− 2
j

)
· (cotβ)n−2−j · voln−2(M)

= voln−1(K) +On−2 ·
n−2∑
j=0

(
n− 2
j

)
· (cosβ)n−2−j · (sinβ)j · In,j(α) ,
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where the last equality follows from volM = (sinβ)n−2 · On−2.
Note that in the case of circular caps we may compute the volume of the α-tube

in a different way by taking the circular cap of radius β+α. Using Proposition 4.1.18
we get for 0 ≤ α ≤ π − β

voln−1 T (K,α) = voln−1 (B(z, β + α))

= On−2 ·
∫ α+β

0

sin(ρ)n−2 dρ

= On−2 ·
∫ β

0

sin(ρ)n−2 dρ+On−2 ·
∫ α

0

sin(β + ρ)n−2 dρ

= voln−1(K) +On−2 ·
∫ α

0

(sin ρ cosβ + cos ρ sinβ)n−2 dρ

(4.28)
= voln−1(K) +On−2 ·

n−2∑
j=0

(
n− 2
j

)
· (cosβ)n−2−j · (sinβ)j · In,j(α) ,

which coincides with the result of the first computation.

Example 4.3.6. Let K = Rn+ ∩ Sn−1 be the intersection of the positive orthant
with the unit sphere. The face structure of K is simple. A typical k-dimensional
face F of K is given by equations of the form

x1 = x2 = . . . = xn−1−k = 0 , xn−k > 0 , . . . , xn > 0 ,
n∑
i=1

x2
i = 1 . (4.30)

The number of k-dimensional faces of K is given by
(

n
n−1−k

)
and the k-dimensional

volume of such a face is 1
2k+1 · Ok. The dual NS

F of the face F defined in (4.30) is
given by the equations (cf. Example 3.1.10)

x1 < 0 , x2 < 0 , . . . , xn−1−k < 0 , xn−k = . . . = xn = 0 ,
n∑
i=1

x2
i = 1 ,

and we have voln−2−kN
S
F = 1

2n−1−k · On−2−k. So from Corollary 4.3.4 we get

vol T (K,α) = voln−1(K) +
n−2∑
j=0

In,j(α) ·
∑
F∈Fj

volj(F ) · voln−2−j(NS
F )

=
On−1

2n
+
n−2∑
j=0

In,j(α) ·
(

n

n− 1− j

)
· 1

2j+1
· Oj ·

1
2n−1−j · On−2−j

=
On−1

2n
+
n−2∑
j=0

On−1,j(α) ·
(
n
j+1

)
2n

.

In the remainder of this section we will give the proof of Weyl’s tube formula
for spherical convex sets as stated in Theorem 4.3.2 part (2).

Proof of Theorem 4.3.2. We will only prove part (2) of the theorem. The euclidean
statement in part (1) follows analogously, and the proof even simplifies as some
subtleties of the spherical setting do not appear in the euclidean setting.
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First of all, due to continuity we may assume w.l.o.g. that 0 < α < π
2 , so

that T (K,α) ⊆ Sn−1 \ K̆. The projection map ΠK : Sn−1 \ K̆ → K (cf. (3.2) in
Section 3.1) provides the following decomposition of Sn−1

Sn−1 \ K̆ =
⋃̇k̃

i=0
Π−1
K (Mi) .

Denoting Ti(α) := T (K,α) ∩Π−1
K (Mi) we get

voln−1 T (K,α) =
k̃∑
i=0

voln−1 Ti(α) . (4.31)

For i = 0 we have M0 = int(K), and thus T0(α) = int(K). This implies

voln−1 T0(α) = voln−1(K) . (4.32)

Now, let us fix an index 1 ≤ i ≤ k̃. The set Ti(α) is given by

Ti(α) =
{

cos(ρ) · p+ sin(ρ) · η | p ∈Mi , η ∈ NS
p (K) , 0 ≤ ρ ≤ α

}
.

Besides that, we define the set Ti(α) ⊆ Ti(α) via

Ti(α) :=
{

cos(ρ) · p+ sin(ρ) · η | p ∈Mi , η ∈ N◦p (K) , 0 < ρ < α
}
,

where N◦p (K) := relint(Np(K)) ∩ Sn−1. It is easily seen that the complement of
Ti(α) in Ti(α) is a nullset, so that we have

voln−1 Ti(α) = voln−1 Ti(α) . (4.33)

Recall that NSMi denotes the spherical duality bundle of Mi (with respect to
K) (cf. Section 3.3). This bundle is by the definition of stratified caps a smooth
manifold. We now consider the map

ϕi : NSMi × (0, α)→ Ti(α) , (p, η, ρ) 7→ cos(ρ) · p+ sin(ρ) · η . (4.34)

This map is bijective by definition of NSMi (cf. (3.9)); in the special case where Mi

has codimension 1 in Sn−1 we have seen this in the proof of Corollary 4.1.13. Fur-
thermore, ϕi is smooth by assumption on the smoothness of Mi and NSMi. By the
assumption that M1, . . . ,Mk are the essential pieces and Mk, . . . ,Mk̃ are negligible,
we have

dimNSMi

{
= n− 2 if i ≤ k
< n− 2 if k < i ≤ k̃ .

This implies that the image of ϕi, i.e., the set Ti(α), has volume 0 if Mi is a negligible
piece:

voln−1 Ti(α) = 0 , for k < i ≤ k̃ . (4.35)

For the rest of the proof let us drop the index i and we assume that M = Mi,
1 ≤ i ≤ k, is an essential stratum of the given decomposition. To finish the proof
we need to show that

voln−1 T (α) =
d∑
j=0

In,j(α) ·
∫
p∈M

∫
η∈NSp (K)

σd−j(p,−η) dη dp . (4.36)
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We will achieve this by computing the derivative of the function ϕ from (4.34), so
that we can apply the transformation formula from Lemma 4.1.15 to compute the
volume of T (α).

Note that NSM ⊆ TSM , and dimNSM = dimTSM as M is an essential piece
(cf. Definition 3.3.9). Therefore, the spherical duality bundle NSM is an open
subset of the spherical normal bundle TSM . In particular, the tangent space of
NSM at (p, η) coincides with the tangent space of TSM at (p, η), which we have
computed in Lemma 4.1.7. Therefore, the tangent space of NSM×(0, α) at (p, η, ρ)
is given by

T(p,η,ρ)(NSM × (0, α)) = T(p,η)T
SM × R = (L1 ⊕ L2)× R . (4.37)

Here, L1 and L2 are defined via

L1 := {(ζ,−Wp,η(ζ)) | ζ ∈ TpM} , L2 := {0} × (T⊥p M ∩ p⊥ ∩ η⊥) ,

where Wp,η : TpM → TpM denotes the Weingarten map of M at p in direction η.
If ζ1, . . . , ζd is an orthonormal basis of TpM consisting of principal directions, i.e.,
Wp,η(ζi) = κi(p, η) ζi, then the vectors ξ1, . . . , ξd, where

ξi := (ζi,−κi(p, η) ζi) ∈ L1 ,

describe an orthogonal basis of L1. Note that ‖ξi‖ =
√

1 + κi(p, η)2. Furthermore,
if η1, . . . , ηn−d−2 denotes an orthonormal basis of T⊥p M ∩ p⊥ ∩ η⊥, then

(0, η1) , . . . , (0, ηn−d−2) ∈ L2

is an orthonormal basis of L2.
As for the derivative of the map ϕ : (p, η, ρ) 7→ cos(ρ) · p + sin(ρ) · η, note that

for fixed ρ ∈ (0, α), the map

ϕ̃ : NSM → T (α) , (p, η) 7→ cos(ρ) · p+ sin(ρ) · η

is linear. Therefore, we get

D(p,η,ρ)ϕ(ξi, 0) = D(p,η)ϕ̃(ζi,−κi(p, η) ζi) = (cos(ρ)− sin(ρ) · κi(p, η)) · ζi ,

D(p,η,ρ)ϕ(0, ηj , 0) = D(p,η)ϕ̃(0, ηj) = sin(ρ) · ηj ,

D(p,η,ρ)ϕ(0, 0, 1) = d
dρ (cos(ρ) · p+ sin(ρ) · η) = − sin(ρ) · p+ cos(ρ) · η ,

where 1 ≤ i ≤ d and 1 ≤ j ≤ n− d− 2. Note that the n− 1 vectors

ζ1, . . . , ζd , η1, . . . , ηn−d−2 , − sin(ρ) · p+ cos(ρ) · η

are orthonormal. Note also that we have −κi(p, η) = κi(p,−η). Therefore, the
Normal Jacobian of D(p,η,ρ)ϕ is the absolute value of the determinant of the matrix

cos(ρ)+sin(ρ)·κ1(p,−η)√
1+κ1(p,η)2

. . .
cos(ρ)+sin(ρ)·κd(p,−η)√

1+κd(p,η)2

0 0

0
sin(ρ)

. . .
sin(ρ)

0

0 0 1


.
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As κi(p,−η) ≥ 0 (cf. Remark 4.1.5), we have

ndet(D(p,η,ρ)ϕ) = sin(ρ)n−d−2 ·
d∏
i=1

cos(ρ) + sin(ρ) · κi(p,−η)√
1 + κi(p, η)2

.

By Lemma 4.1.15 we get

voln−1 T (α) =
∫

(p,η,ρ)∈NSM×(0,α)

ndet(D(p,η,ρ)ϕ) d(p, η, ρ)

=
∫

(p,η)∈NSM

∫ α

0

sin(ρ)n−d−2 ·
d∏
i=1

cos(ρ) + sin(ρ) · κi(p,−η)√
1 + κi(p, η)2

dρ d(p, η) . (4.38)

By Lemma 4.1.17 and another application of the coarea formula in Lemma 4.1.15
to the projection NSM →M , we may continue as

(4.38) =
∫
p∈M

∫
η∈NSp (K)

∫ α

0

sin(ρ)n−d−2 ·
d∏
i=1

(cos(ρ) + sin(ρ) · κi(p,−η)) dρ dη dp

=
∫
p∈M

∫
η∈NSp (K)

∫ α

0

sin(ρ)n−d−2 ·
d∑
j=0

cos(ρ)j · sin(ρ)d−j · σd−j(p,−η) dρ dη dp

(4.28)
=

d∑
j=0

In,j(α) ·
∫
p∈M

∫
η∈NSp (K)

σd−j(p,−η) dρ dη dp .

This shows (4.36) and thus finishes the proof. 2

4.4 Spherical intrinsic volumes

In this section we will describe the notion of spherical intrinsic volume. We rely in
our presentation on [30] and [29].

Central for the definition of the spherical intrinsic volumes is the following state-
ment about the decomposition of the volume of the tube around a convex set.

Proposition 4.4.1. For K ∈ K(Sn−1) and 0 ≤ α ≤ π
2 the volume of the α-tube

around K is given by

voln−1 T (K,α) = voln−1(K) +
n−2∑
j=0

Vj(K) · On−1,j(α) , (4.39)

for some continuous functions Vj : K(Sn−1)→ R, 0 ≤ j ≤ n− 2.

Note that if the volume of the tube, voln−1 T (K,α), is of the form as stated
in (4.39), then the values Vj(K), 0 ≤ j ≤ n − 2, are uniquely determined. This
follows from the linear independence of the functions On−1,j and the constant func-
tion (cf. Proposition 4.3.1). For the proof of Proposition 4.4.1 we need the following
simple fact about the continuity of the volume of the tube.
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Lemma 4.4.2. For α ≥ 0 the function

K(Sn−1)→ R , K 7→ voln−1 T (K,α) (4.40)

is uniformly continuous.

Proof. Let (Ki)i be a sequence of spherical convex sets in K(Sn−1), which con-
verges to K ∈ K(Sn−1). It suffices to show that voln−1 T (Ki, α) converges to
voln−1 T (K,α). This implies that the function in (4.40) is continuous, and thus
uniformly continuous, as K(Sn−1) is a compact metric space (cf. Proposition 3.2.3).

For all ε > 0 there exists N ∈ N such that dH(K,Ki) < ε, i.e., K ⊆ T (Ki, ε)
and Ki ⊆ T (K, ε), for all i ≥ N . This implies that T (K,α) ⊆ T (Ki, α + ε) and
T (Ki, α) ⊆ T (K,α + ε) for all i ≥ N . In particular, we have voln−1 T (K,α) ≤
voln−1 T (Ki, α + ε) and voln−1 T (Ki, α) ≤ voln−1 T (K,α + ε) for all i ≥ N . We
thus get

vol T (K,α) ≤ lim inf
i→∞

vol T (Ki, α+ ε) ,

lim sup
i→∞

vol T (Ki, α) ≤ vol T (K,α+ ε) .

Letting ε→ 0, we get limi→∞ lim vol T (Ki, α) = vol T (K,α). 2

Proof of Proposition 4.4.1. From Weyl’s tube formula in Theorem 4.3.2 we know
that (4.39) holds for K ∈ Kstr(Sn−1), which is a dense subset of K(Sn−1). The idea
is to use the uniform continuity of the map (4.40) to extend the validity of (4.39)
to all of K(Sn−1). Let

f1 := 1 , f2 := On−1,0 , f3 := On−1,1 , . . . , fn := On−1,n−2 ∈ R[0,π/2] ,

where R[0,π/2] := {f : [0, π2 ] → R}, and 1 denotes the constant function 1(α) = 1.
The fact that f1, . . . , fn are linear independent (cf. Proposition 4.3.1) implies that
there are α1, . . . , αn ∈ [0, π2 ] such that the matrix A ∈ Rn×n, where the ith row
is given by (f1(αi), f2(αi), . . . , fn(αi)), is nonsingular. (This can be proved by
induction on n, similar to the finite-dimensional case.) Let B = (bij) ∈ Rn×n
denote the inverse of the matrix A. For K ∈ K(Sn−1) let gK denote the function

gK : [0, π2 ]→ R , gK(α) := voln−1 T (K,α) .

For a stratified cap K ∈ Kstr(Sn−1) Theorem 4.3.2 implies that gK lies in the span
of the functions f1, . . . , fn, so that we have

gK(α) = voln−1 T (K,α) =
n∑
i=1

ci(K) · fi(α)

for some constants c1(K), . . . , cn(K) depending on K. Using the matrix B, the
constants ci(K) can be expressed in the values of gK at α1, . . . , αn via

ci(K) =
n∑
j=1

bij · gK(αj) .

By Lemma 4.4.2 it follows that the functions ci : Kstr(Sn−1) → R are uniformly
continuous and thus have a unique continuous extension ci : K(Sn−1) → R. Fur-
thermore, for K ∈ K(Sn−1) and K` ∈ Kstr(Sn−1) such that K` → K for `→∞ we
have

voln−1 T (K,α) = lim
`→∞

gK`(α) =
n∑
i=1

lim
`→∞

(ci(K`)) · fi(α) =
n∑
i=1

ci(K) · fi(α) ,
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for all α ∈ [0, π2 ]. Defining Vj(K) := cj+2(K) for 0 ≤ j ≤ n − 2 thus finishes the
proof. 2

Definition 4.4.3. For −1 ≤ j ≤ n − 1 the jth (spherical) intrinsic volume is a
function

Vj : K(Sn−1) ∪ {∅, Sn−1} → R ,

defined as follows. For 0 ≤ j ≤ n − 2 and K ∈ K(Sn−1) the value of Vj in K
is the quantity Vj(K) defined in (4.39). Furthermore, for j ∈ {−1, n − 1} and
K ∈ K(Sn−1) the jth intrinsic volume of K is defined as

Vn−1(K) :=
voln−1(K)
On−1

, V−1(K) :=
voln−1(K̆)
On−1

.

Lastly, for K ∈ {∅, Sn−1}

Vj(∅) :=

{
1 if j = −1
0 else

, Vj(Sn−1) :=

{
1 if j = n− 1
0 else

.

In the following proposition we collect the formulas for the intrinsic volumes that
arise from Weyl’s tube formula.

Proposition 4.4.4. Let K ∈ K(Sn−1) and 0 ≤ j ≤ n− 2.

1. If K is a stratified spherical convex set with decomposition K =
⋃̇k̃
i=0Mi,

such that M0 = int(K), and such that M1, . . . ,Mk are the essential and
Mk+1, . . . ,Mk̃, k ≤ k̃, are the negligible pieces, then

Vj(K) =
1

Oj · On−2−j
·
k∑
i=1

∫
p∈Mi

∫
η∈NSp (K)

σ
(i)
di−j(p,−η) dη dp ,

where di denotes the dimension of the stratum Mi, σ
(i)
` (p,−η) denotes the

`th elementary symmetric function in the principal curvatures of Mi at p in
direction −η (cf. (4.2)), and σ`(p,−η) := 0 if ` < 0.

2. If K is a smooth cap with boundary M := ∂K, then

Vj(K) =
1

Oj · On−2−j
·
∫
p∈M

σn−2−j(p) dM .

3. If K is a polyhedral cap with j-dimensional faces Fj, then

Vj(K) =
∑
F∈Fj

volj(F )
Oj

· voln−2−j(NS
F )

On−2−j
.

Proof. Follows from Theorem 4.3.2, Corollary 4.3.3, and Corollary 4.3.4. 2

Before we continue with properties of the intrinsic volumes, let us consider the
important special cases for K being the intersection of the positive orthant with the
unit sphere.
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Example 4.4.5. Let K = Rn+ ∩ Sn−1. Then from Example 4.3.6 we get for 0 ≤
j ≤ n− 2

Vj(K) =

(
n
j+1

)
2n

.

This formula also holds for j ∈ {−1, n− 1} as is seen easily.

Note that the intrinsic volumes of the positive orthant coincide with the binomial
distribution with n trials and probability of success equal to 1

2 . The deeper reason
for this curious fact is an alternative characterization for the intrinsic volumes of
spherical polytopes that we give in Proposition 4.4.6. Before we state this, recall
that the boundary of a polyhedral cone C decomposes into the relative interiors of
its faces (cf. Remark 3.1.8)

∂C =
⋃̇

F face of C

relint(F ) .

So for x ∈ C we can define

face(x) :=

{
C if x ∈ int(C)
F if x ∈ relint(F ) and F a face of C.

(4.41)

Proposition 4.4.6. Let K ∈ Kp(Sn−1) be a spherical polytope and let C :=
cone(K) denote the corresponding polyhedral cone. Furthermore, let ΠC : Rn → C
denote the projection map onto C, and let dC denote the function

dC : Rn → {0, 1, 2, . . . , n} , x 7→ dim(face(ΠC(x))) , (4.42)

where face(x) is defined as in (4.41). Then the jth intrinsic volume of K is given
by

Vj(K) = Prob
p∈Sn−1

[dC(p) = j + 1] , (4.43)

where p ∈ Sn−1 is drawn uniformly at random.

Proof. The claim is true for j ∈ {−1, n− 1}, as

dC(p) = n ⇐⇒ (dimC = n and p ∈ C) ,

dC(p) = 0 ⇐⇒ (dim C̆ = n and p ∈ C̆) .

In the remainder of the proof we therefore assume 0 ≤ j ≤ n− 2.
Let F e ⊆ C be a face of C of dimension dimF e = j+ 1, and let N = NF e(C) be

the normal cone of C in F e. W.l.o.g. we may also assume that lin(F e) = Rj+1×{0},
so that

F e = F̃ e × {0} and N = {0} × Ñ

with F̃ e ⊆ Rj+1 and Ñ ⊆ Rn−j−1. The inverse image of F e under the projection
map ΠC is given by Π−1

C (F e) = F̃ e × Ñ .
Now, if x = (x1, x2) ∈ Rj+1 × Rn−j−1 is drawn at random with respect to the

n-dimensional normal distribution, i.e., x ∈ N (0, In), then we get

Prob
x∈N (0,In)

[
x ∈ Π−1

C (F e)
]

= Prob
x1∈N (0,Ij+1)

[
x1 ∈ F̃ e

]
· Prob
x2∈N (0,In−j−1)

[
x2 ∈ Ñ

]
=

vol(F̃ e ∩ Sj)
Oj

· vol(Ñ ∩ Sn−2−j)
On−2−j

.
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Altogether, we get

Prob
p∈Sn−1

[dC(p) = j + 1] = Prob
x∈N (0,In)

[dC(x) = j + 1]

=
∑

F∈Fj(K)

volj(F )
Oj

· voln−2−j(NS
F )

On−2−j

Prop. 4.4.4
= Vj(K) . 2

Proposition 4.4.6 explains why the intrinsic volumes of the positive orthant are
given by a binomial distribution:

Example 4.4.7. Let C = Rn+ and K = C∩Sn−1. For x ∈ Rn the projection ΠC(x)

is given by the element x̄ = (x̄1, . . . , x̄n), where x̄i =

{
xi if xi ≥ 0
0 else

. From this it

is easily seen that the function dC from (4.42) is given by

dC(x) = |{i | xi > 0}| .

If p ∈ Sn−1 is drawn uniformly at random, then the probability that the ith com-
ponent of p is positive is given by 1

2 . Therefore, by (4.43) the jth intrinsic volume
is given by

Vj(K) = (probability of j + 1 ‘heads’ when tossing n fair coins)

=

(
n
j+1

)
2n

.

Another important example is where K ⊂ Sn−1 is a circular cap. We will
consider this in the next example.

Example 4.4.8. Let K = B(z, β), 0 < β ≤ π/2, be a circular cap. Then from
Example 4.3.5 we get for 0 ≤ j ≤ n− 2

Vj(K) =
On−2

Oj · On−2−j
·
(
n− 2
j

)
· sin(β)j · cos(β)n−2−j

(4.24)
=

(
(n− 2)/2

j/2

)
· sin(β)j · cos(β)n−2−j

2
. (4.44)

For Lorentz caps, i.e., β = π
4 , we have sin(π4 ) = cos(π4 ) = 1√

2
, and (4.44) simplifies

further to

Vj(K) =

(
(n−2)/2
j/2

)
2n/2

.

Furthermore, we get from Proposition 4.1.18 that

Vn−1(K) =
On−2

On−1
·
∫ β

0

sin(ρ)n−2 dρ

(4.18)
=

(
(n− 2)/2
(n− 1)/2

)
· n− 1

2
·
∫ β

0

sin(ρ)n−2 dρ ,

and similarly

V−1(K) =
(

(n− 2)/2
−1/2

)
· n− 1

2
·
∫ π

2−β

0

sin(ρ)n−2 dρ .
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For β = π
4 and using the hypergeometric function (cf. Remark D.3.3 in Section D.3

in the appendix) this simplifies to

Vn−1(K) = V−1(K)

=

(
(n−2)/2
−1/2

)
2n/2

· 2F1(n−1
2 , 1

2 ; n+1
2 ; 1

2 )
√

2

[
∼

(
(n−2)/2
−1/2

)
2n/2

, for n→∞

]
.

An important property of the intrinsic volumes of circular caps is their log-
concavity. We show this in the following proposition.2

Proposition 4.4.9. Let K = B(z, β), 0 ≤ β ≤ π/2, be a circular cap. Then the
sequence V−1(K), V0(K), . . . , Vn−1(K) is log-concave and has no internal zeros.

Proof. From (4.44) we get for 1 ≤ j ≤ n− 3

Vj(K)2

Vj−1(K) · Vj+1(K)
=

(
(n−2)/2
j/2

)2(
(n−2)/2
(j−1)/2

)
·
(

(n−2)/2
(j+1)/2

) ≥ 1 ,

where the inequality follows from Proposition 4.1.23. For j = n− 2 we compute

Vn−2(K)2

Vn−3(K) · Vn−1(K)
=

(
(n−2)/2
(n−2)/2

)2(
(n−2)/2
(n−3)/2

)
·
(

(n−2)/2
(n−1)/2

)︸ ︷︷ ︸
≥1

· sin(β)n−1

cos(β) · (n− 1) ·
∫ β

0
sin(ρ)n−2 dρ

≥ sin(β)n−1

(n− 1) ·
∫ β

0
cos(ρ) · sin(ρ)n−2 dρ

= 1 ,

and similarly for j = 0. Finally, as Vj(K) > 0 for all −1 ≤ j ≤ n− 1, the sequence
in particular has no internal zeros. 2

The following proposition lists some elementary properties of the intrinsic vol-
umes.

Proposition 4.4.10. 1. The intrinsic volumes are nonnegative, i.e., Vj(K) ≥ 0
for all −1 ≤ j ≤ n− 1 and for all K ∈ K(Sn−1) ∪ {∅, Sn−1}.

2. If S ∈ Si(Sn−1) then Vj(S) =
{

1 if j = i
0 else

}
.

3. For K ∈ K(Sn−1) the intrinsic volumes of the dual K̆ are given by

Vj(K) = Vn−2−j(K̆) .

4. For all K ∈ K(Sn−1) ∪ {∅, Sn−1}

n−1∑
j=−1

Vj(K) = 1 .

In particular, Vj(K) ≤ 1.

2Also the intrinsic volumes of the positive orthant form a log-concave sequence. But as the posi-
tive orthant is only a special second-order cone, this observation also follows from Corollary 4.4.14.
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5. For all convex caps K ∈ Kc(Sn−1)

n−1∑
j=−1

j≡0 mod 2

Vj(K) =
n−1∑
j=−1

j≡1 mod 2

Vj(K) = 1
2 .

In particular, if K is a cap then Vj(K) ≤ 1
2 .

Proof. (1) For polytopes K ∈ Kp(Sn−1) the intrinsic volumes are nonnegative,
which is immediate from Proposition 4.4.4. For K ∈ K(Sn−1) the nonnegativity
of the intrinsic volumes follows from their continuity and from the fact that the
polytopes Kp(Sn−1) form a dense subset of K(Sn−1).

(2) The claim about the intrinsic volumes of subspheres follows directly from
the definition of the intrinsic volumes.

(3) Recall that for K ∈ Kp(Sn−1) we have a bijection between the j-dimensional
faces of K and the (n− 2− j)-dimensional faces of K̆ (cf. Lemma 3.1.9). Using this
it is straightforward to deduce Vj(K) = Vn−2−j(K̆) for K ∈ Kp(Sn−1) from Propo-
sition 4.4.4. The general validity of this identity follows from the continuity of the
intrinsic volumes and an approximation argument as above (cf. Proposition 3.2.4).
Alternatively, one may use Proposition 4.1.11 to first show Vj(K) = Vn−2−j(K̆) for
K ∈ Ksm(Sn−1) and then apply the approximation argument.

(4) The fact that the intrinsic volumes add up to 1 either follows from Proposi-
tion 4.4.6 or from the general fact T (K, π2 ) = Sn−1 \ int(K̆), which implies

On−1 − voln−1 K̆ = voln−1 T (K, π2 ) = voln−1(K) +
n−2∑
j=0

On−1,j(π2 )︸ ︷︷ ︸
=On−1

·Vj(K) .

(5) Finally, the last statement follows from the Gauss-Bonnet formula in spher-
ical space. See [30, Sec. 4.3] or the references given in [29, p. 5] for proofs of this
fact. 2

Next, we will state the principal kinematic formula in a similar form as given
in [12, Sec. 1.7.3]. To achieve this we define the intrinsic volume polynomial and
the reverse volume polynomial via

V (K;X) := V−1(K) + V0(K) ·X + . . .+ Vn−1(K) ·Xn , (4.45)

V rev(K;X) := Vn−1(K) + Vn−2(K) ·X + . . .+ V−1(K) ·Xn , (4.46)

where X denotes a formal variable. Note that while V (K;X) is independent of
whether K is considered as an element in K(Sn−1) or in K(SN−1) for some N ≥ n,
this is not the case for the reverse volume polynomial V rev(K;X). For example, if
S ∈ Sk(Sn−1) (cf. (3.4)), then V (S;X) = Xk+1, while V rev(S;X) = Xn−k−1.

Note also that from Vj(K) = Vn−2−j(K̆) (cf. Proposition 4.4.10) we get

V (K̆;X) = V rev(K;X) , V rev(K̆;X) = V (K;X) .

Theorem 4.4.11 (Principal kinematic formula). Let K,K ′ ∈ K(Sn−1), and let Q ∈
O(n) be chosen uniformly at random. Then the expected reverse volume polynomial
of the intersection K ∩ (Q ·K ′) is given modXn by

E [V rev(K ∩ (Q ·K ′);X)] ≡ V rev(K;X) · V rev(K ′;X) mod Xn .
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For the intrinsic volumes this means that for 0 ≤ j ≤ n− 1

E [Vj(K ∩ (Q ·K ′))] =
n−1∑
i=j

Vi(K) · Vn−1+j−i(K ′) and

E [V−1(K ∩ (Q ·K ′))] = 1−
n−1∑
j=0

n−1∑
i=j

Vi(K) · Vn−1+j−i(K ′) .

In particular, if S ∈ Sk(Sn−1) is chosen uniformly at random, then for 0 ≤ j ≤ n−1

E [Vj(K ∩ S)] =

{
Vj+n−1−k(K) if j ≤ k
0 if j > k ,

E [V−1(K ∩ S)] = V−1(K) + . . .+ Vn−2−k(K) .

Proof. See for example [30, Ch. 5] or the references given in [12, Sec. 1.7.3]. 2

As a corollary we get the following result about the probability that a randomly
chosen subspace intersects a given cap. In terms of the convex feasibility problem,
the following result provides a formula for the probability that a random instance
(defined by a matrix with i.i.d. normal distributed entries) is feasible.

Corollary 4.4.12. Let K ∈ Kc(Sn−1) and let S ∈ Sk(Sn−1), 0 ≤ k ≤ n − 2, be
chosen uniformly at random. Then

Prob[K ∩ S 6= ∅] = 2 ·
n−1∑

j=n−1−k
j≡n−1−k mod 2

Vj(K) .

For the special case K = Rn+ ∩ Sn−1 we have

Prob[K ∩ S 6= ∅] =
1

2n−1
·
k∑
j=0

(
n− 1
j

)
.

The second statement is usually attributed to Wendel [62], who proved it in a
direct way.

Proof. First, note that the intersection K∩S is either empty or again a convex cap.
Since Vj(∅) = 0 if j 6= −1 and V−1(∅) = 1, we get from Proposition 4.4.10 part (5)
for all S ∈ Sk(Sn−1)

2 ·
n−1∑
j=−1

j≡0 mod 2

Vj(K ∩ S) =

{
1 if K ∩ S 6= ∅
0 if K ∩ S = ∅

. (4.47)

From Theorem 4.4.11 we get for S ∈ Sk(Sn−1) chosen uniformly at random

E[Vj(K ∩ S)] =

{
Vj+n−1−k(K) if j ≤ k
0 if j > k

.
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Therefore, taking the expectation of both sides in (4.47) yields

Prob[K ∩ S 6= ∅] = 2 ·
n−1∑
j=−1

j≡0 mod 2

E[Vj(K ∩ S)] = 2 ·
k∑
j=0

j≡0 mod 2

Vj+n−1−k(K)

= 2 ·
n−1∑

`=n−1−k
`≡n−1−k mod 2

V`(K) ,

where we changed the summation by using ` := n− 1 + j − k.
For the special case K = Rn+ ∩ Sn−1 recall from Example 4.4.7 that V`(K) =(

n
`+1

)
/2n. Changing the summation again by setting i := n− 1− `, we get

Prob[K ∩ S 6= ∅] = 2 ·
k∑
i=0

i≡k mod 2

(
n

n−1−i+1

)
2n

=
k∑
i=0

i≡k mod 2

(
n
i

)
2n−1

.

Using the identity
(
n
i

)
=
(
n−1
i−1

)
+
(
n−1
i

)
we get

k∑
i=0

i≡k mod 2

(
n

i

)
=

k∑
i=0

(
n− 1
i

)
,

which finishes the proof. 2

In the realm of convex optimization the direct product construction C1×. . .×Ck,
where each Ci is a closed convex cone, is an important tool. It is therefore of
particular interest to have a simple formula for the intrinsic volumes of products in
terms of the intrinsic volumes of the components.

Fortunately, such a general rule exists. It says that the intrinsic volumes of a
product of caps arise from the intrinsic volumes of the components via convolution.
In fact, this holds for the spherical case as well as for the euclidean case.

The euclidean case has been treated in [36, Sec. 9.7]. The formula for the
spherical case seems to be new. We will give proofs for both calculation rules in the
appendix (although the statement is in the euclidean case not new, the proof we
give in the appendix is new).

Analogous to the definition of the spherical intrinsic volume polynomial we define
for Ke ∈ K(Rn) the euclidean intrinsic volume polynomial V e(Ke;X) via

V e(Ke;X) :=
n∑
j=0

V ej (Ke) ·Xj , (4.48)

where X denotes a formal variable.

Proposition 4.4.13. 1. Let Ke
1 ,K

e
2 be convex bodies. Then

V e(Ke
1 ×Ke

2 ;X) = V e(Ke
1 ;X) · V e(Ke

2 ;X) . (4.49)

2. Let K1,K2 be spherical convex sets. Then

V (K1 ~K2;X) = V (K1;X) · V (K2;X) (4.50)

(cf. Section 3.1.1 for the definition of K1 ~K2).
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Proof. See Section B.2 and Section B.1 (a proof for the euclidean statement can
also be found in [36, Sec. 9.7]). 2

Corollary 4.4.14. 1. Let K1,K2 be spherical convex sets such that the sequences
of their intrinsic volumes are log-concave and with no internal zeros each.
Then also the sequence of intrinsic volumes of K := K1 ~K2 is log-concave
and has no internal zeros.

2. If C = Ln1 × . . . × Lnk is a second-order cone, then the intrinsic volumes of
K := C ∩ Sn−1 form a log-concave sequence with no internal zeros.

3. Let K1,K2 be self-dual caps such that the sequences of their intrinsic volumes
are unimodal each. Then also the sequence of intrinsic volumes of K :=
K1 ~K2 is unimodal.

Proof. Parts (1) and (3) follow from Proposition 4.4.13 and Proposition 4.1.22.
Part (2) additionally follows from Proposition 4.4.9, where it was shown that the
intrinsic volumes of a circular cap form a log-concave sequence with no internal
zeros. 2

Remark 4.4.15. Note that the calculation rule from Proposition 4.4.13 provides yet
another way to compute the intrinsic volumes of the positive orthant: For C1 := R+,
K1 := C1∩S0, we have vol0(K1) = vol0(K̆1) = 1 and therefore V (K1;X) = 1

2 ·X+ 1
2 .

As Rn+ = R+ × . . .× R+ we may apply (4.50) to get

V (K;X) = V (K1;X)n =
1
2n
· (X + 1)n =

1
2n
·
n∑
j=0

(
n

j

)
·Xj ,

where K := Rn+ ∩ Sn−1, yielding Vj−1(K) =
(
n
j

)
/2n.

In Section 4.2 we have seen that the sequence of euclidean intrinsic volumes is
log-concave. We formulate the spherical analog as a conjecture that (if true) would
prove very useful for the average analysis of the Grassmann condition in Section 7.1.

Conjecture 4.4.16. For K ∈ K(Sn−1) the sequence V−1(K), V0(K), . . . , Vn−1(K)
is log-concave, i.e.

Vi(K)2 ≥ Vi−1(K) · Vi+1(K) , for i = 0, . . . , n− 2 .

In fact, for the average analysis in Section 7.1 it would be enough to know that
the following weaker conjecture is true.

Conjecture 4.4.17. For K ⊆ Sn−1 a self-dual cap the sequence of intrinsic volumes
V0(K), . . . , Vn−2(K) is unimodal, i.e., we have

V0(K) ≤ . . . ≤ Vbn2 c(K) = Vdn2 e(K) ≥ . . . ≥ Vn−2(K) .

The last topic of this section is about the relation between euclidean and spher-
ical intrinsic volumes. Note that if we have a closed convex cone C, then instead of
intersecting C with the unit sphere Sn−1 we may as well intersect C with the unit
ball Bn. The result is not a spherical convex set but a (euclidean) convex body.
Thus, let

K := C ∩ Sn−1 , Ke := C ∩Bn ,
where Bn denotes the n-dimensional unit ball. The following proposition provides
a link between the euclidean intrinsic volumes of Ke and the spherical intrinsic
volumes of K. This result also appears to be new. We will give the proof in the
appendix.
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Proposition 4.4.18. Let C ⊆ Rn be a closed convex cone, and let K := C ∩ Sn−1

and Ke := C ∩Bn. Then

V ei (Ke) =
n∑
j=i

V ei (Bj) · Vj−1(K) =
n∑
j=i

(
j

i

)
· ωj
ωj−i

· Vj−1(K) .

Proof. The second equality follows from Example 4.2.1. We will give the rest of the
proof in Section B.3. 2

The following remarks shall comment on the natural approach of using the link
between the euclidean and spherical intrinsic volumes provided by Proposition 4.4.18
to attack Conjecture 4.4.16. In a nutshell, we have come to the conclusion that
Proposition 4.4.18 does not help to get a proof for Conjecture 4.4.16.

Remark 4.4.19. It is not possible to deduce Conjecture 4.4.16 solely from the log-
concavity of the euclidean intrinsic volumes and the transformation formula from
Proposition 4.4.18. More precisely, if a0, . . . , an is a log-concave sequence of positive
numbers, and if b0, . . . , bn and c0, . . . , cn are defined via

ai =
n∑
j=i

(
j

i

)
· bj , ai =

n∑
j=i

(
j

i

)
· ωj
ωi
· cj , i = 0, . . . , n ,

then neither the sequence b0, . . . , bn nor the sequence c0, . . . , cn need to be log-
concave. Counter-example: Take a = (exp(3), exp(3), exp(2.5), exp(1)). Then b ≈
(9.46, 3.88, 4.03, 2.72) and c ≈ (6.57, 4.05, 6.75, 2.72), and neither b nor c is log-
concave.

However, there probably is a connection between the log-concavity of the eu-
clidean and the spherical intrinsic volumes. Unfortunately, even if this connection
exists, it goes in the ‘wrong’ direction.

Remark 4.4.20. In [10, Thm. 2.5.3] it is shown that if a0, . . . , an is a log-concave
sequence of positive numbers, then the sequence b0, . . . , bn defined by

bi :=
n∑
j=i

(
j

i

)
· aj

is also log-concave. It is tempting to believe that also the sequence c0, . . . , cn defined
by

ci :=
n∑
j=i

(
j

i

)
· ωj
ωj−i

· aj

is log-concave. If this were true, then a positive answer to Conjecture 4.4.16 would
imply that the sequence V ei (Ke), i = 0, . . . , n, where Ke = C ∩ Bn and C ⊆ Rn
a closed convex cone, is log-concave. But this is true by the Alexandrov-Fenchel
inequality (cf. Proposition 4.2.2).

4.4.1 Intrinsic volumes of the semidefinite cone

In this section we will state the formulas for the intrinsic volumes of the semidefinite
cone. We will provide a more detailed discussion of the occurring formulas, as well
as the proofs for all statements in this section in Chapter C in the appendix.
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The semidefinite cone is defined in the euclidean space

Symn = {A ∈ Rn×n | AT = A} ,

which is a linear subspace of Rn×n of dimension n(n+1)
2 =: t(n). Let S(Symn)

denote the unit sphere in this subspace.
In order to get nice formulas for the intrinsic volumes we introduce some more

notation. For z = (z1, . . . , zn) we denote the Vandermonde determinant by

∆(z) :=
∏

1≤i<j≤n

(zi − zj) .

For 0 ≤ r ≤ n we can decompose the Vandermonde determinant into (cf. (C.5) in
Section C.1)

∆(z) =
r·(n−r)∑
`=0

(−1)` ·∆r,`(z) ,

where

∆r,`(z) := ∆(x) ·∆(y) · σ`(x−1 ⊗ y) ·
r∏
i=1

xn−ri ,

with x := (z1, . . . , zr), y := (zr+1, . . . , zn), σ` denoting the `th elementary symmetric
function, and

x−1 ⊗ y :=
(
y1

x1
, . . . ,

y1

xr
,
y2

x1
, . . . ,

y2

xr
, . . . ,

yn−r
x1

, . . . ,
yn−r
xr

)
∈ Rr·(n−r) .

Lastly, we define for 0 ≤ r ≤ n and 0 ≤ ` ≤ r(n− r)

J(n, r, `) :=
∫
z∈Rn+

e−
‖z‖2

2 · |∆r,`(z)| dz . (4.51)

Proposition 4.4.21. Let Symn
+ denote the nth semidefinite cone

Symn
+ := {A ∈ Symn | A is pos. semidef.} ,

and let Kn := Symn
+ ∩S(Symn) denote the corresponding cap. The kth intrinsic

volume of Kn, −1 ≤ k ≤ t(n)− 1 = n(n+1)
2 − 1, is given by

Vk(Kn) =
1

n! · 2n2 ·
∏n
d=1 Γ(d2 )

·
n∑
r=0

(
n

r

)
· J(n, r, k + 1− t(n− r)) ,

where J(n, r, `) is defined as in (4.51) for 0 ≤ ` ≤ r(n− r), resp. J(n, r, `) := 0 for
the remaining cases. In particular,

V−1(Kn) = Vt(n)−1(Kn) =
1

n! · 2n2 ·
∏n
d=1 Γ(d2 )

·
∫
z∈Rn+

e−
‖z‖2

2 · |∆(z)| dz . (4.52)

Proof. See Section C.2 in the appendix. 2

Remark 4.4.22. Up to our knowledge, only the values V−1(Kn) = Vt(n)−1(Kn)
have been known before, as these coincide with the probability that a random
matrix from the nth Gaussian orthogonal ensemble (cf. Section C.1) is positive
definite. It is known that this probability equals the above given term in (4.52)
(cf. for example [22]). The computation of the remaining intrinsic volumes seems
to not have been done before.
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See Figure 4.2 for a graphical display of the intrinsic volumes of Kn for n =
1, . . . , 6. In Figure 4.3 we have displayed the logarithms of the intrinsic volumes,
to illustrate the conjectured log-concavity (cf. Conjecture 4.4.16). The observable
inaccuracy for n = 6 results from the fact that the values of the intrinsic volumes
of Kn for n = 4, 5, 6 are obtained via numerical approximation. See Chapter C for
the details.

In Section C.3 we will formulate a couple of open questions related to the intrinsic
volumes of the semidefinite cone.
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(a) n = 1 (b) n = 2 (c) n = 3

(d) n = 4 (e) n = 5 (f) n = 6

Figure 4.2: The intrinsic volumes of the semidefinite cone.

(a) n = 1 (b) n = 2 (c) n = 3

(d) n = 4 (e) n = 5 (f) n = 6

Figure 4.3: The logarithms of the intrinsic volumes of the semidefinite cone.
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Chapter 5

Computations in the
Grassmann manifold

The objective of this chapter is to prepare the ground for the computations in
Chapter 6 by describing a differential geometric view on Grn,m. This is greatly
inspired by the articles [25] and [3], although we will only loosely refer to these
sources within this chapter.

5.1 Preliminary: Riemannian manifolds

We adopt the notation from [23]. It is not the aim of this section to reproduce
all the well-known material that may be necessary for a full understanding, but
only to pick out the concepts that we need, to recall the corresponding notions,
and to set up the notation. For more thorough introductions including proofs we
refer to [23], [8], and [19, Ch. 1], or any of the numerous introductory books on
Riemannian geometry.

Let M be a smooth manifold, where smooth always means C∞. For p ∈ M
we denote the tangent space of M in p by TpM . The disjoint union of all these
tangent spaces gives the tangent bundle of M , denoted by TM . The tangent bundle
carries the structure of a smooth manifold and has a projection map Π: TM →M ,
TpM 3 v 7→ p. A (local) vector field X on M is a section of the tangent bundle,
i.e., a smooth function X : M � TM , which satisfies Π(X(p)) = p for all p ∈ M
for which X(p) is defined. Here and throughout, the notation� shall indicate that
the map may only be defined on an open subset of the domain.

It is convenient, and we will make extensive use of this, to define vector fields
along curves. For example, if we have a curve c : J → M , J ⊆ R an open interval,
then a vector field V along c is a map V : J → TM , such that Π(V (t)) = c(t). Note
that if c : J → M is a curve on M , then c naturally defines a vector field along c
which is given by t 7→ ċ(t) = dc

dt (t). More generally, if we have a map ϕ : M1 →M2

between manifolds M1,M2, then the derivative of ϕ defines a map between the
tangent bundles TM1 and TM2. We denote this derivative by Dϕ : TM1 → TM2,
and we denote by Dpϕ : TpM1 → Tϕ(p)M2, p ∈M1, the restriction of Dϕ to TpM1,
which is a linear map.

A Riemannian metric on M is a family of bilinear forms 〈., .〉p, p ∈ M , which
varies smoothly in p. This means that if X,Y are local vector fields on the same
open subset U ⊆ M , the map U → R, p 7→ 〈X(p), Y (p)〉p, is smooth. A smooth

93
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map ϕ : M1 → M2 between Riemannian manifolds M1,M2 of dimensions n1 ≥ n2

is called a Riemannian submersion iff for every p ∈M there exists an orthonormal
basis v1, . . . , vn1 of TpM1 and an orthonormal basis w1, . . . , wn2 of TpM2 such that
Dpϕ(vi) = wi for all i = 1, . . . , n2 and Dpϕ(vj) = 0 for all j = n2 + 1, . . . , n1.

A first application of the Riemannian metric is that it defines a connection on M ,
i.e. a way to differentiate vector fields.1 So, if we are given a vector field V : J → TM
along a curve c : J → M , then there is a well-defined vector field ∇V : J → TM ,
the covariant derivative of V along c. If M is embedded in euclidean space and if
the Riemannian metric is the usual scalar product in euclidean space, then ∇V (t)
is given by the orthogonal projection of dV

dt (t) onto the tangent space of M in c(t).
Thus, the derivative ∇V may be thought of as the change of V relative to M .

Another application of the Riemannian metric is that it defines a way to measure
the lengths of curves on M . More precisely, for every p ∈M the bilinear form 〈., .〉p
on TpM defines a norm ‖.‖p on TpM via ‖v‖p :=

√
〈v, v〉p, v ∈ TpM . With this

norm one can define the length of a curve c : J →M via

length(c) :=
∫
J

‖ċ(t)‖c(t) dt .

Furthermore, this also defines a notion of distance on M via

d(p, q) := inf
{

length(c)
∣∣∣∣c : [0, 1]→M a piecewise smooth curve

with c(0) = p and c(1) = q

}
. (5.1)

This distance is in fact a metric, which is called the geodesic metric on M . We will
explain this nomenclature in the following paragraphs.

A geodesic on M is a curve c : J → M , for which the derivative of the field ċ is
the zero vector field, i.e., for which

∇ċ(t) = 0 , for all t ∈ J .

Informally, a geodesic on M is a curve which does not bend relative to M . It can
be shown that for every p ∈ M there exists a radius r > 0 such that for every
v ∈ TpM \ {0} with s := ‖v‖p < r there exists a unique geodesic c : (−r, r) → M
with c(0) = p and ċ(0) = 1

s · v. In fact, the assignment v 7→ c(s) yields a map

expp : TpM �M ,

which is known as the exponential map.
For r > 0 small enough the exponential map is a diffeomorphism between the

open ball of radius r around the origin in TpM and a corresponding open neighbor-
hood of p in M . Such a neighborhood of p in M is called a normal neighborhood of p.
It can be shown that if q lies in a normal neighborhood around p, then there exists
a unique path of shortest length between p and q, and this path can be described
by a geodesic. Therefore, the distance d(p, q) as defined in (5.1) is in this case the
length of a geodesic, which justifies the name geodesic distance (cf. [19, § I.6]).

In Section 4.1.3 we have described integration on submanifolds of euclidean
space. This naturally transfers to general Riemannian manifolds in the following
way. If ϕ : M1 → M2 is a smooth map between Riemannian manifolds, then for
p ∈ M1 the map Dpϕ : TpM1 → Tϕ(p)M2 is a linear map between inner product
spaces. If the differential Dpϕ is surjective, then the Normal Jacobian of Dpϕ is
defined as in (4.9). We can use this to define the integral of an integrable function

1This is known as the Theorem of Levi-Civita (see e.g. [23, Thm. 3.6]).
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f : M → R over an open subset U ⊆M , which has a parametrization, i.e., a smooth
diffeomorphism, ϕ : Rm → U , via∫

p∈U

f(p) dM :=
∫

x∈Rm

f(ϕ(x)) · ndet(Dxϕ) dx . (5.2)

It can be shown that this definition does not depend on the specific parametriza-
tion ϕ of U . Furthermore, using a partition of unity as indicated in Section 4.1.3,
one can define the integral of f over M , which we denote by

∫
M
f dM . In particular,

the volume of a subset U ⊆M is defined via

volU :=
∫
p∈M

1U (p) dM ,

where 1U denotes the characteristic function of U . From the Coarea Formula that
we stated in Lemma 4.1.15 one can deduce the following corollaries which we will
use for several computations of volumes of Riemannian manifolds.

Corollary 5.1.1. Let ϕ : M1 → M2 be a smooth surjective map between Rieman-
nian manifolds M1,M2, such that the derivative Dpϕ is surjective for almost all
p ∈M1. Then

volM1 =
∫

q∈M2

∫
p∈ϕ−1(q)

1
ndet(Dpϕ)

dϕ−1(q) dM2 . (5.3)

If additionally dimM1 = dimM2, then

volM2 ≤
∫

q∈M2

#ϕ−1(q) dM2 =
∫

p∈M1

ndet(Dpϕ) dM1 , (5.4)

where #ϕ−1(q) denotes the number of elements in the fiber ϕ−1(q). Furthermore,
if ϕ is a diffeomorphism then

volM2 =
∫

p∈M1

ndet(Dpϕ) dM1 . (5.5)

Proof. Equations (5.3) and (5.4) follow from (4.10) and (4.11) in Lemma 4.1.15,
respectively, using suitable partitions of unity. Equation (5.5) follows from (5.4). 2

5.2 Orthogonal group

In this section we will recall some elementary facts about the orthogonal group O(n),
that will be crucial for the computations in the Grassmann manifold Grn,m. At
some points it is beneficial to know that the orthogonal group is a compact Lie
group and thus has some particularly nice properties. For this reason we will also
state some elementary definitions and well-known facts about Lie groups with the
single purpose of simplifying some arguments about the orthogonal group, which is
our only interest.

A Lie group G is a smooth manifold which is at the same time a group, and
for which the group operations (x, y) 7→ x · y and x 7→ x−1 are smooth maps. The
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most important example of a Lie group is the general linear group Gln(R). It can
be shown that a closed subgroup of Gln(R) is again a Lie group, a so-called linear
Lie group. Thus, the orthogonal group O(n) = {Q ∈ Rn×n | QTQ = In}, which is
obviously a closed subgroup of Gln(R), is a linear Lie group.

If G is a Lie group then for every g ∈ G one has a diffeomorphism given by the
(left) multiplication map Lg : G→ G, Lg(g′) := g · g′. In particular, the differential
DeLg : TeG → TgG, where e ∈ G denotes the identity element, maps the tangent
space at e to the tangent space at g. The tangent space at e is also called the Lie
algebra of G.

For the orthogonal group, being a linear Lie group and thus embedded in eu-
clidean space Rn×n, one can identify the Lie algebra with a linear subspace of Rn×n.
It turns out that this Lie algebra is given by the set of skew-symmetric (n × n)-
matrices Skewn = {U ∈ Rn×n | UT = −U}. In particular, the dimension of O(n) is
given by dim Skewn = n(n−1)

2 .
Moreover, the Lie algebra of O(n), Skewn, has a natural inner product inherited

from the euclidean space Rn×n. The following two observations are immediate.
First, not only the tangent space at the identity matrix, but any tangent space of
O(n) can be identified with a linear subspace of Rn×n. More precisely, the tangent
space TQO(n) can be identified with Q·Skewn = {Q·U | U ∈ Skewn}. In particular,
TQO(n) has a natural inner product inherited from Rn×n. The second observation
is that the inner product in Rn×n is invariant under (left and right) multiplication
with orthogonal matrices.

Combining these observations we may conclude that we have an inner product
on each tangent space of O(n), which is invariant under both left and right multi-
plication with elements from O(n), i.e. we have a bi-invariant Riemannian metric
on O(n). It turns out that it is beneficial to scale this inner product by a factor
of 1

2 , so that we define

〈QU1, QU2〉Q := 1
2 · tr(U

T
1 · U2) (5.6)

for Q ∈ O(n) and U1, U2 ∈ Skewn. Observe that we have a canonical basis for Skewn

given by {Eij − Eji | 1 ≤ j < i ≤ n}, where Eij denotes the (i, j)th elementary
matrix, i.e., the matrix which is zero everywhere except for the (i, j)th entry which
is 1. This basis is orthogonal and by the choice of the scaling factor it is also
orthonormal. In fact, this is the reason to use the scaling factor in the first place.
In the euclidean metric on Rn×n these basis vectors have length

√
2.

Note that the fact that the Riemannian metric is (up to the scaling by 1
2 ) in-

herited from Rn×n makes the induced connection ∇ on O(n) particularly simple. It
is just the orthogonal projection of the derivative in Rn×n onto the corresponding
tangent space of O(n).

Being a smooth manifold, O(n) also has an exponential map. For compact Lie
groups, the exponential map is always globally defined. Moreover, it can be shown
(see for example [8, Sec. IV.6/VII.8]) that for O(n) with the Riemannian metric
chosen as above the exponential map coincides with the exponential function on
matrices. More precisely, for Q · U ∈ TQO(n), U ∈ Skewn, we have

expQ(QU) = Q · expIn(U) = Q ·
∞∑
k=0

Uk

k!
. (5.7)

Note also that we have

Q−1 · expIn(U) ·Q = expIn(Q−1 · U ·Q) . (5.8)
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For U = Eij − Eji and Iij := Eii + Ejj , i > j, we have

U0 = In , U1 =U , U2 =−Iij , U3 =−U ,

U4 = Iij , U5 =U , . . . .

From this computation it is straightforward to compute the infinite series
∑∞
k=0

(ρ·U)k

k!
resulting in

∞∑
k=0

(ρ · U)k

k!
= cos(ρ) · (Eii + Ejj) + sin(ρ) · (Eij − Eji) +

∑
k 6=i,j

Ekk .

We thus have an explicit formula for the geodesics on O(n) in direction of the
canonical basis vectors Eij − Eji, i > j. Analogously, a simple computation shows
that for m ≤ n

2 and

U =

0 −A 0
A 0 0
0 0 0

 ∈ Rn×n , A := diag(α1, . . . , αm)

we get

expIn(ρ · U) =

CA,ρ −SA,ρ 0
SA,ρ CA,ρ 0

0 0 In−2m

 , (5.9)

where

CA,ρ := diag(cos(ρ · α1), . . . , cos(ρ · αm)) ,
SA,ρ := diag(sin(ρ · α1), . . . , sin(ρ · αm)) .

Geometrically, the following happens by the transformation (5.9): For 1 ≤ i ≤ m
the vectors ei and ei+m, are rotated in the plane lin{ei, ei+m} with velocity αi, and
this happens for all 1 ≤ i ≤ m simultaneously.

For later use we compute the volume of the orthogonal group.

Proposition 5.2.1. The volume of the orthogonal group with respect to the Rie-
mannian metric as defined in (5.6) is given by

volO(n) =
n−1∏
i=0

Oi =
2n · π n

2+n
4∏n

d=1 Γ(d2 )
. (5.10)

Remark 5.2.2. If we do not scale the Riemannian metric as in (5.6) but simply
take the inner product as inherited from Rn×n, then this causes a scaling of the
volume of O(n) by

√
2

dimO(n)
= 2

n(n−1)
4 . This explains the discrepancy between

the formula for volO(n) in (5.10) and the computation in [26, 3.2.28(5)].

Proof of Proposition 5.2.1. Let e1 ∈ Rn denote the first canonical basis vector
in Rn, and let us consider the smooth surjection

ϕ : O(n)→ Sn−1 , Q 7→ Q · e1 .

The fiber of e1 = (1, 0, . . . , 0)T is given by

ϕ−1(e1) =


 1 0 ··· 0

0
...
0

Q̄

∣∣∣∣∣∣ Q̄ ∈ O(n− 1)

 ,
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which is isometric to O(n − 1) and in particular has the same volume. This also
holds for the fiber of any other p ∈ Sn−1.

Next, we will show that ϕ is a Riemannian submersion so that in particular the
Normal Jacobian of ϕ is given by ndetQ ϕ = 1. If we have shown this then we are
done as we may then apply the coarea formula (5.3) from Corollary 5.1.1, which
yields

volO(n) =
∫

p∈Sn−1

∫
Q∈ϕ−1(p)

1 dϕ−1(p) dSn−1 = On−1 · volO(n− 1) .

By induction, using O(1) = {1,−1} and volO(1) = 2 = O0, we get

volO(n) =
n−1∏
i=0

Oi =
n−1∏
i=0

2π
i+1
2

Γ( i+1
2 )

=
2n · π n

2+n
4∏n

d=1 Γ(d2 )
.

So it remains to show that ϕ is a Riemannian submersion. W.l.o.g. we may
restrict ourselves to analyze the derivative in Q = In. To compute the derivative
DInϕ we consider the geodesic in direction Eij − Eji, 1 ≤ j < i ≤ n,

γij(ρ) := cos(ρ) · (Eii + Ejj) + sin(ρ) · (Eij − Eji) +
∑
k 6=i,j

Ekk ,

so that dγij
dρ (0) = Eij − Eji. The composition of γij with ϕ is given by ϕ(γi1(ρ)) =

cos(ρ) · e1 + sin(ρ) · ei and ϕ(γij(ρ)) = e1 if j 6= 1. Therefore, we get

DInϕ(Eij − Eji) =

{
ei if j = 1
0 if j 6= 1 .

In other words, the orthonormal basis vectors Ei1 − E1i, i = 2, . . . , n, are sent to
the orthonormal basis e2, . . . , en of Te1S

n−1, and the other basis vectors Eij −Eji,
j 6= 1, are sent to the zero vector. Thus, ϕ is a Riemannian submersion, which
finishes the proof. 2

5.3 Quotients of the orthogonal group

This section is devoted to the description of the Stiefel manifold Stn,m and the
Grassmann manifold Grn,m, where 1 ≤ m ≤ n − 1, as quotients of the orthogonal
group O(n). The Stiefel manifold consists of all m-tuples of orthonormal vectors
in Rn and the Grassmann manifold consists of all m-dimensional linear subspaces
of Rn, i.e.,

Stn,m = {B ∈ Rn×m | BTB = Im}
Grn,m = {W ⊆ Rn | W an m-dimensional subspace} .

Note that we have already encountered both of them in slightly different forms
(cf. (2.5) in Section 2.1.2, and (3.4) in Section 3.2)

Stn,m ∼= Rm×n◦ , Grn,m ∼= Sm−1(Sn−1) .

In fact, there are a number of different ways to identify these sets (cf. the discussion
in [25]), but it turns out that considering both of them as quotients of the orthogonal



5.3 Quotients of the orthogonal group 99

group is particularly beneficial for the computations. We will explain this next by
first discussing the general concept of a homogeneous space.

In the following let G be a Lie group and let H be a closed Lie subgroup of G,
i.e., H is a closed subset of G and furthermore a subgroup G. It can be shown that
if H is a closed subgroup of G, then it is also a submanifold of G. The space of left
cosets of H in G is denoted by

G/H := {gH | g ∈ G} .

Note that since the left multiplication map Lg : G→ G, Lg(g′) = g · g′, is a diffeo-
morphism, each coset gH is a submanifold of G. We use the notation [g] := gH for
g ∈ G.

By definition of G/H there is a natural projection map

Π: G→ G/H , g 7→ [g] .

Furthermore, the set of left cosets G/H carries a transitive G-action via

G×G/H → G/H , (g1, [g2]) 7→ [g1g2] .

It turns out that G/H even carries a natural manifold structure, which is shown by
the following theorem.

Theorem 5.3.1. Let G be a Lie group and H a closed Lie subgroup. Then there
exists a unique C∞-manifold structure on G/H such that the projection Π: G →
G/H is smooth, and such that for every g ∈ G there exists an open subset U ⊆ G/H
and a smooth map ψ : U → G with Π(ψ(u)) = u for all u ∈ U and ψ(ug) = g for
some ug ∈ U .

g ∈ G G/H

ug ∈U

Π

ψ

The G-action G × G/H → G/H, (g1, [g2]) 7→ [g1g2], is a smooth map, and the
dimension of G/H is given by dimG/H = dimG− dimH.

Proof. See for example [8, Thm. IV.9.2]. 2

For our computations this theorem is not quite sufficient. The following lemma
will allow us to describe an explicit model for the tangent spaces in G/H and with
it also a Riemannian metric etc. Note that an element g ∈ G lies in the submanifold
[g] = gH ⊆ G, which implies that the tangent space of [g] in g is a linear subspace
of the tangent space of G in g. The tangent space Tg[g] is also called the vertical
space of G/H in g.

Lemma 5.3.2. Let G be a Lie group and H a closed Lie subgroup. Furthermore,
let g ∈ G and let L ⊂ TgG be a linear subspace such that TgG = Tg[g] ⊕ L. Then
there exists an open ball B around the origin in L such that the restriction of the
composition Π ◦ expg parametrizes an open neighborhood U of [g] ∈ G/H, i.e.,

TgG G G/H

⊆ ⊆ ⊆

L ⊇B expg(B) U

∈ ∈ ∈

0 g [g]

expg Π

∼ ∼ . (5.11)
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In particular, if D0 denotes the differential of Π ◦ expg in the origin of TgG, then
the map L→ T[g]G/H, v 7→ D0(v), is a linear isomorphism.

Proof. See [34, Lemma II.4.1] for the case g = e. The case for general g ∈ G follows
easily by using the left multiplication map. 2

The direct summand L of the vertical space Tg[g] thus provides a model of the
tangent space of G/H at [g]. The question is of course, how the direct summand L
should be chosen in order to provide a “good” model of the tangent space of the
quotient G/H. If the Lie group G is endowed with a Riemannian metric, then
one can choose L as the orthogonal complement of the vertical space Tg[g]. The
orthogonal complement (Tg[g])⊥ of the vertical space is called the horizontal space
of G/H in g. From (5.11) we get a linear isomorphism between the horizontal space
and the tangent space of the quotient

TgG ⊇ (Tg[g])⊥ ∼−→ T[g]G/H , v 7→ D0(v) , (5.12)

where D0 denotes the differential of Π ◦ expg in the origin of TgG. Note that for
a different representative gh, h ∈ H, of the coset [g], we get a linear isomorphism
between the horizontal spaces of G/H in g and in gh, i.e.,

(Tg[g])⊥

T[g]G/H

(Tgh[g])⊥

∼

∼
τg,h . (5.13)

In order to transfer the Riemannian metric on G to a Riemannian metric on the quo-
tient G/H one could think of declaring the linear isomorphism in (5.12) an isometry.
This is possible if the Riemannian metric on G is bi-invariant, i.e., invariant under
left and right multiplication, as this implies that the induced isomorphisms τg,h
between the horizontal spaces are isometries. We will verify this in the following
paragraphs for the special case G = O(n).

Recall that (cf. Section 5.2) in the case G = O(n) the tangent space at the
identity element is given by TInO(n) = Skewn, and the tangent space at Q ∈ O(n)
is given by TQO(n) = Q · Skewn. For a subgroup H ⊆ O(n) let us denote the
horizontal space of O(n)/H at the identity In by

Skewn := (TInH)⊥ ⊆ TInO(n) = Skewn .

The horizontal space of O(n)/H at Q is then given by

(TQ[Q])⊥ = Q · Skewn ⊆ TQO(n) = Q · Skewn .

Let us now fix an element Q ∈ O(n), and an element h ∈ H, and let us compute
the isomorphism τQ,h between the horizontal spaces of O(n)/H at Q and at Qh
(cf. (5.13)). For U ∈ Skewn we have

QU = d
dt expQ(t ·QU)(0) ∈ Q · Skewn ,

and the corresponding tangent vector in T[Q]O(n)/H is given by

d
dt

[
expQ(t ·QU)

]
(0) .



5.3 Quotients of the orthogonal group 101

To see what the image of QU under the map τQ,h is, we compute[
expQ(t ·QU)

]
=
[
expQ(t ·QU) · h

] (5.7)
=
[
Q · expIn(t · U) · h

]
=
[
Qh · h−1 · expIn(t · U) · h

] (5.8)
=
[
Qh · expIn(t · h−1 U h)

]
(5.7)
=
[
expQh(t ·Qh · h−1 U h)

]
.

This shows that we have

τQ,h(QU) = Qh · h−1 U h .

In particular, the transition map τQ,h is an isometry (cf. (5.6)).
Now that we have computed the transition functions τQ,h between the horizontal

spaces, we see that we may identify the tangent space of the quotient O(n)/H with
the following set

T[Q]O(n)/H ∼=
(
[Q]× Skewn

)
/ ∼ , (5.14)

where we define the equivalence relation ∼ via

(Q1, U1) ∼ (Q2, U2) :⇐⇒ τQ1,h(Q1 U1) = Q2 U2 , i.e., (5.15)

h−1U1h = U2 , with h := Q−1
1 ·Q2 ∈ H .

We denote the equivalence class defined by (Q,U) by [Q,U ], so that from now we
write a tangent vector in T[Q]O(n)/H in the form

[Q,U ] ∈ T[Q]O(n)/H ,

where U ∈ Skewn.
As the transition maps τQ,h are isometries, we may define an inner product on

T[Q]O(n)/H by declaring the linear isomorphism in (5.12) between the horizontal
space Q · Skewn and the tangent space T[Q]O(n)/H an isometry. This amounts to
declaring an inner product on the right-hand side of (5.14) via〈

[Q,U1] , [Q,U2]
〉

:= 〈U1, U2〉In
(5.6)
= 1

2 · tr(U
T
1 · U2) , (5.16)

for U1, U2 ∈ Skewn.
We have thus defined an O(n)-invariant Riemannian metric on the quotient

O(n)/H. It can be shown that the following properties hold for this Riemannian
metric:

1. The projection Π: O(n)→ O(n)/H is a Riemannian submersion.

2. The differential of the projection Π: O(n)→ O(n)/H is given by the orthog-
onal projection onto the horizontal space.

3. The exponential map on O(n)/H is given in the following way. For [Q] ∈
O(n)/H and U ∈ Skewn we have

exp[Q]([Q,U ]) = [expQ(QU)] , (5.17)

where exp and exp shall denote the exponential maps of O(n)/H and O(n),
respectively. In other words, the projection Π maps geodesics in O(n) on
geodesics in O(n)/H, and every geodesic in O(n)/H may be obtained this
way.
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Before specializing the subgroup H so that O(n)/H yields a model for the Stiefel
or the Grassmann manifold, let us compute the volume of the homogeneous space
O(n)/H.

Proposition 5.3.3. Let H be a closed Lie subgroup of the orthogonal group O(n).
Then the volume of the homogeneous space O(n)/H is given by

volO(n)/H =
volO(n)

volH
.

Proof. The proof goes analogous to the proof of Proposition 5.2.1.2 The projection
map Π: O(n) → O(n)/H is a Riemannian submersion, and for each element H̃ ∈
O(n)/H the fiber Π−1(H̃) = H̃ ⊂ O(n) is isometric to H. Applying the co-area
formula (5.3) from Corollary 5.1.1 yields

volO(n) =
∫

H̃∈O(n)/H

∫
Q∈H̃

1 dH̃ dO(n)/H = volO(n)/H · volH . 2

5.3.1 Stiefel manifold

The (n,m)th Stiefel manifold Stn,m, m ≤ n, consists of all m-tuples of orthonormal
vectors in Rn. Instead of considering only m-tuples we may as well consider all
n-tuples of orthonormal vectors in Rn, i.e., all (ordered) orthonormal bases, and
identify those for which the first m components coincide. This last description of
Stn,m can be written as a quotient of the orthogonal group O(n). To make this
precise, let

H :=
{(

Im 0
0 Q̄

)∣∣∣∣ Q̄ ∈ O(n−m)
}
⊆ O(n) .

Note that H ∼= O(n − m). In particular, H is a closed Lie subgroup of O(n).
Considering the homogeneous space O(n)/H we have that the left cosets Q1H =
Q2H iff the first m columns of Q1 and Q2 coincide. Therefore, we get a model for
the Stiefel manifold via

Stn,m ∼= O(n)/H .

As H ∼= O(n −m), we also write Stn,m ∼= O(n)/O(n −m) implicitly assuming the
embedding of O(n−m) in O(n) as given by H.

The vertical and the horizontal space of O(n)/H in In are given by

TInH =
{(

0 0
0 V

)∣∣∣∣V ∈ Skewn−m

}
,

Skewn = (TInH)⊥ =
{(

U −RT
R 0

)∣∣∣∣U ∈ Skewm , R ∈ R(n−m)×m
}
.

Furthermore, the induced Riemannian metric on Stn,m is given by (cf. (5.16))〈[
Q,
(
U1 −RT1
R1 0

)]
,
[
Q,
(
U2 −RT2
R2 0

)]〉
= 1

2 · tr(U
T
1 · U2) + tr(RT1 ·R2) . (5.18)

From Proposition 5.3.3 we get that the volume of the Stiefel manifold with respect
to this Riemannian metric is given by

vol Stn,m =
volO(n)

volO(n−m)
Prop. 5.2.1

=
n−1∏

i=n−m
Oi =

2m · π 2nm−m2+m
4∏n

d=n−m+1 Γ(d2 )
. (5.19)

2In fact, Proposition 5.2.1 can be deduced from Proposition 5.3.3, as Sn−1 ∼= Stn,1 and thus

On−1 = vol Stn,1 =
vol O(n)

vol O(n−1)
(cf. Section 5.3.1).
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Remark 5.3.4. As in Remark 5.2.2 we point out the difference between the volume
of Stn,m with respect to the Riemannian metric on Stn,m as defined in (5.18) and
the volume of Stn,m if we consider it as a submanifold of Rn×m and take the volume
with respect to the volume form induced by this inclusion. To get the latter volume
we need to scale the result in (5.19) by

√
2

dim Stn,m = 2
m(m−1)

4 +
m(n−m)

2 , which yields

the volume 2
m
2 · (2π)

2nm−m2+m
4 ·

∏n
d=n−m+1 Γ(d2 )−1.

5.3.2 Grassmann manifold

The (n,m)th Grassmann manifold Grn,m, m ≤ n, consists of all m-dimensional
subspaces of Rn. We may identify an m-dimensional subspace W with the set of
all orthonormal bases of this subspace. Moreover, we may also identify W with the
set of all orthonormal bases of Rn whose first m components span W and whose
last n−m components span its orthogonal complement.3 This, in turn, leads to a
description of Grn,m as a homogeneous space. We define

H :=
{(

Q̄ 0
0 ¯̄Q

)∣∣∣∣ Q̄ ∈ O(m) , ¯̄Q ∈ O(n−m)
}
⊆ O(n) ,

so that H ∼= O(m) × O(n − m) is in particular a closed Lie subgroup of O(n).
As for the homogeneous space O(n)/H it is straightforward that two left cosets
Q1H,Q2H ∈ O(n)/H coincide iff the first m columns of Q1 and the first m columns
of Q2 span the same subspace W, or equivalently the last n−m columns of Q1 and
the last n−m columns of Q2 span the same subspace W⊥. We thus get

Grn,m ∼= O(n)/H ,

which we also write in the form Grn,m ∼= O(n)/(O(m) × O(n − m)), implicitly
assuming the embedding of O(m)×O(n−m) in O(n) as given by H.

The vertical and the horizontal space of O(n)/H in In are given by

TInH =
{(

U 0
0 V

)∣∣∣∣U ∈ Skewm , V ∈ Skewn−m

}
,

Skewn = (TInH)⊥ =
{(

0 −RT
R 0

)∣∣∣∣R ∈ R(n−m)×m
}
.

Furthermore, the induced Riemannian metric on Grn,m is given by (cf. (5.16))〈[
Q,
(

0 −RT1
R1 0

)]
,
[
Q,
(

0 −RT2
R2 0

)]〉
= tr(RT1 ·R2) . (5.20)

Note that for h =
(
Q̄ 0

0 ¯̄Q

)
∈ H, i.e., Q̄ ∈ O(m) and ¯̄Q ∈ O(n−m), we have

[
Q,
(

0 −RT
R 0

)]
(5.15)

=
[
Qh, h−1 ·

(
0 −RT
R 0

)
· h
]

=
[
Qh,

(
0 −( ¯̄QT ·R·Q̄)T

¯̄QT ·R·Q̄ 0

)]
.

Note that the rank of the matrix R coincides with the rank of ¯̄QT · R · Q̄. So for
v :=

[
Q,
(

0 −RT
R 0

)]
∈ T[Q] Grn,m we may define the rank of v via

rk(v) := rk(R) . (5.21)

3Note that this might be interpreted as a primal-dual view on (GrP) and (GrD) (cf. Section 2.3).



104 Computations in the Grassmann manifold

Moreover, if R has the singular value decomposition (assuming m ≤ n
2 for notational

reasons)

R = ¯̄Q ·
(
A
0

)
· Q̄T ,

with A = diag(α1, . . . , αm), then we have

[
Q,

(
0 −RT
R 0

)]
=

Qh,
0 −A 0
A 0 0
0 0 0

 . (5.22)

Note that the rank of the tangent vector v is given by

rk(v) = |{i | αi > 0}| .

The Grassmann manifold is a compact and connected manifold, and from Propo-
sition 5.3.3 we get that the volume of Grn,m with respect to the above Riemannian
metric is given by

vol Grn,m =
volO(n)

volO(m) · volO(n−m)
Prop. 5.2.1

=
∏n−1
i=0 Oi∏m−1

i=0 Oi ·
∏n−m−1
i=0 Oi

=
∏n−1
i=n−mOi∏m−1
i=0 Oi

= π
m(n−m)

2 ·
m∏
d=1

Γ(d2 )
Γ(n−m+d

2 )
. (5.23)

The scaling of the Riemannian metric is in some sense arbitrary and only mo-
tivated by the resulting computations. That is why it is sometimes helpful not to
consider the volume but the relative volume

rvolM :=
volM

vol Grn,m

for measurableM⊆ Grn,m. In fact, the relative volume is a probability measure on
Grn,m and it can be described without considering Grn,m as a homogeneous space.

Proposition 5.3.5. Let M ⊆ Grn,m, and let B ∈ Rn×m and B′ ∈ R(n−m)×n be
random matrices, where each entry of B and B′ is chosen i.i.d. normal distributed.
Then

rvolM = Prob [imB ∈M] = Prob [kerB′ ∈M] . (5.24)

Proof. The measure rvol on Grn,m is a Borel measure, which is invariant under the
action of the orthogonal group O(n), and which is normalized via rvol(Grn,m) = 1.
It is known that these properties uniquely determine the measure rvol (cf. for ex-
ample [39, Ch. 3]). This fact easily implies (5.24), as we will see next.

Recall that Rn×m∗ denotes the set of full rank (n ×m)-matrices. Let µ and µ′

denote the measures on Rn×m∗ respectively R(n−m)×n
∗ , which result from taking the

entries in B ∈ Rn×m∗ respectively B ∈ R(n−m)×n
∗ i.i.d. standard normal distributed

(note that B ∈ Rn×m∗ and B ∈ R(n−m)×n
∗ with probability 1). Furthermore, let I

and K denote the maps

I : Rn×m∗ → Grn,m , B 7→ imB ,

K : R(n−m)×n
∗ → Grn,m , B′ 7→ kerB′ .

(5.25)
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Then we have

Prob [imB ∈M] =
∫

I−1(W)

dµ =
∫
W

dµ∗ ,

Prob [kerB′ ∈M] =
∫

K−1(W)

dµ′ =
∫
W

dµ′∗ ,

where µ∗ and µ′∗ denote the pushforwards of the measures µ and µ′ onto Grn,m via
the maps I and K, respectively. These pushforwards are also orthogonal invariant
probability measures on Grn,m. From the above mentioned uniqueness we thus get
that the integrals coincide with rvol. 2

Remark 5.3.6. We obtain further representations of the Grassmann manifold by
identifying a subspace W ⊆ Rn with all its bases or with all bases of its com-
plement. Formally, this means that we can identify Grn,m with Rm×n∗ /Glm or
R(n−m)×n
∗ /Gln−m. Note that Rm×n∗ and R(n−m)×n

∗ are homogeneous spaces, for
example Rm×n∗

∼= Gln /Gln−m, where Gln−m is identified with a corresponding
subgroup of Gln. Moreover, the maps I and K as defined in (5.25) are Riemannian
submersions and thus continuous, open, and closed maps.

5.4 Geodesics in Grn,m

In this section we will have a closer look at geodesics in Grn,m. Central to the
understanding of the geometry of the Grassmann manifold is the notion of principal
angles, which was originally defined by Jordan [35].

Definition 5.4.1. Let 1 ≤ m ≤M ≤ n− 1, and let W1 ∈ Grn,m and W2 ∈ Grn,M .
Furthermore, let X1 ∈ Rn×m and X2 ∈ Rn×M be such that the columns of Xi form
an orthonormal basis of Wi, i = 1, 2. The principal angles α1 ≤ . . . ≤ αm ∈ [0, π2 ]
betweenW1 andW2 are defined as the arccosines of the singular values of the matrix
XT

1 X2 ∈ Rm×M , i.e.,

XT
1 X2 = Q1

(
cos(α1) 0 ··· 0

. . .
...

...
cos(αm) 0 ··· 0

)
·QT2 ,

where Q1 ∈ O(m) and Q2 ∈ O(M).

Note that we have ‖X1‖ = ‖X2‖ = 1, as the columns of X1 and X2 are or-
thonormal vectors in Rn. This implies σ1 = ‖XT

2 X1‖ ≤ ‖XT
2 ‖ · ‖X1‖ = 1, so that

the arccosines of the singular values are well-defined. Furthermore, it is easily seen
that the principal angles are independent of the above chosen orthonormal bases
X1, X2 (cf. Proposition D.2.2).

Remark 5.4.2. The number of principal angles, which are 0, gives the dimension
of the intersection W1 ∩W2:

α1 = . . . = αk = 0 , αk+1 > 0 ⇐⇒ k = dim(W1 ∩W2) .

The ‘⇐’-direction follows from the fact that we can choose X1 and X2 such that
the first k columns coincide and describe an orthonormal basis of W1 ∩ W2. The
‘⇒’-direction is also verified easily.
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We will analyze principal angles in more details in Chapter D in the appendix.
One important property of the principal angles is that they parametrize pairs of
subspaces up to orthogonal transformation (cf. Proposition D.2.6). In particular,
if we have any function f defined on Grn,m×Grn,m satisfying f(QW1, QW2) =
f(W1,W2) for all W1,W2 ∈ Grn,m, Q ∈ O(n), then this function f only depends
on the principal angles. This means that there exists a (symmetric) function g
defined on [0, π2 ]m such that f(W1,W2) = g(α1, . . . , αm), where α1, . . . , αm denote
the principal angles between W1 and W2. This emphasizes the central role of the
principal angles for the Grassmann manifold.

Another important property of the principal angles is that they are basically
invariant under the duality map. The precise statement is given in the following
proposition.

Proposition 5.4.3. Let 1 ≤ m ≤M ≤ n−1, and letW1 ∈ Grn,m andW2 ∈ Grn,M .
Then the nonzero principal angles between W1 and W2 coincide with the nonzero
principal angles between W⊥1 and W⊥2 .

Proof. See Corollary D.2.5. 2

Note that the bijection Grn,m → Sm−1(Sn−1),W 7→ W∩Sn−1, implies that the
Hausdorff distance on Sm−1(Sn−1) transfers to a metric on Grn,m, which we also
denote by dH,

dH(W1,W2) := dH(W1 ∩ Sn−1,W2 ∩ Sn−1) .

The following proposition shows how this metric is related to the principal angles.

Proposition 5.4.4. Let W1,W2 ∈ Grn,m, and let α1 ≤ . . . ≤ αm denote the
principal angles between W1 and W2. Then the Hausdorff distance between W1 and
W2 is given by

dH(W1,W2) = ‖(α1, . . . , αm)‖∞ = αm . (5.26)

Furthermore, the map Grn,m → Grn,n−m, W 7→ W⊥, is an isometry if Grn,m and
Grn,n−m are both endowed with the Hausdorff metric.

Proof. Let Si :=Wi∩Sn−1, i = 1, 2, denote the subspheres defined byW1 andW2,
and let Xi ∈ Rn×m be such that the columns of Xi form an orthonormal basis ofWi,
i = 1, 2. From the definition of the principal angles in Definition 5.4.1 and from the
geometric interpretation of the minimum singular value in Proposition 2.1.3 we get

cosαm = max{r | XT
1 X2(Bm) ⊇ Bm(r)} ,

where Bm(r) ⊂ Rm denotes the ball of radius r, and Bm := Bm(1). As X1 : Rm →
Rn is a linear isometry, we have

XT
1 X2(Bm) ⊇ Bm(r) ⇐⇒ X1X

T
1 X2(Bm) ⊇ X1(Bm(r)) .

Furthermore, Xi(Bm(r)) equals the intersection of Wi with Bn(r), and the linear
map XiX

T
i equals the orthogonal projection onto Wi (cf. Lemma 2.1.11), i = 1, 2.

This yields

cosαm = max {r | ΠW1(W2 ∩Bn) ⊇ W1 ∩Bn(r)}
= max {‖x‖ | x ∈ ΠW1(S2)}
= min{cos(d(q, S1)) | q ∈ S2}
= cos(max{d(q, S1) | q ∈ S2}) .
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By symmetry this also holds with interchanged roles ofW1 andW2, so that we may
conclude

αm = max{d(q, S1) | q ∈ S2} = max{d(p, S2) | p ∈ S1}
= dH(S1, S2) .

The claim that the map W 7→ W⊥ is an isometry follows from (5.26) and
Proposition 5.4.3. 2

The following fundamental lemma yields concrete formulas for the geodesics
in the Grassmann manifold Grn,m. We will assume that m ≤ n

2 to simplify the
notation.

Lemma 5.4.5. Let W ∈ Grn,m, with m ≤ n
2 , and let v ∈ TW Grn,m. Then there

exists Q ∈ O(n) such that [Q] =W and

v =

Q,
0 −A 0
A 0 0
0 0 0

 , (5.27)

where A = diag(α1, . . . , αm) with α1, . . . , αm ≥ 0. Furthermore, the exponential
map exp on Grn,m in W in direction v is given by

expW(ρ · v) =

Q ·
CA,ρ −SA,ρ 0
SA,ρ CA,ρ 0

0 0 In−2m

 , (5.28)

where

CA,ρ = diag(cos(ρ · α1), . . . , cos(ρ · αm)) ,
SA,ρ = diag(sin(ρ · α1), . . . , sin(ρ · αm)) .

Proof. In (5.22) we have seen that for every v ∈ TW Grn,m we can find a represen-
tative Q ∈ O(n) with [Q] =W, such that v is of the form (5.27).

The exponential map on Grn,m in W = [Q] in direction v = [Q,U ] is given by
(cf. (5.17))

expW(ρ · v) =
[
expQ(ρ ·QU)

]
=
[
Q · expIn(ρ · U)

]
,

where exp shall denote the exponential map on O(n). From (5.9) in Section 5.2 we
thus get the claimed formula for expW(ρ · v). 2

Example 5.4.6. Let us consider the special case where the rank of the tangent
vector v ∈ TW Grn,m (cf. (5.21)) is rk(v) = 1. If the tangent vector has unit length,
i.e., ‖v‖ = 1, then we can find Q ∈ O(n) such that [Q] =W, and

v =

Q,


0 0 · · · 0 −1

0 0... 0
...

0 0

1 0 · · · 0 0


 .

The exponential map on Grn,m at W in direction v is thus given by

expW(ρ · v) = [Q ·Qρ] , Qρ :=

cos(ρ) − sin(ρ)

In−2

sin(ρ) cos(ρ)

 .
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Denoting by c : R → Grn,m the curve c(ρ) := expW(ρ · v), let us also compute the
tangent vector ċ(ρ), to get accustomed to the notation. First of all, we have

d
dρ (Q ·Qρ)(ρ) = d

dt (Q ·Qρ+t)(0) = Q ·Qρ · ddtQt(0) = Q ·Qρ ·

 0 −1
0

. . .
0

1 0

 .

This implies that

ċ(ρ) =

Q ·Qρ,
 0 −1

0

. . .
0

1 0

 . (5.29)

Note that this is the correct result, as the exponential map is known to “parallel
transport its velocity”.

In the following proposition we summarize the most important global properties
of the exponential map on Grn,m.

Proposition 5.4.7. Let W = [Q] ∈ Grn,m, and consider the open set

U :=
{[

Q,

(
0 −RT
R 0

)]∣∣∣∣R ∈ R(n−m)×m , ‖R‖ < π

2

}
⊂ TW Grn,m , (5.30)

where ‖R‖ denotes the operator norm of R. Furthermore, let U denote the closure
of U , and let ∂U denote the boundary of U . Then the following holds.

1. The exponential map expW is injective on U .

2. The exponential map expW is surjective on U .

3. If v =
[
Q,

(
0 −RT
R 0

)]
∈ U and W ′ = expW(v), then the curve

[0, 1]→ Grn,m , ρ 7→ expW(ρ · v) (5.31)

is a shortest length geodesic between W and W ′. In particular, we have
dg(W,W ′) = ‖v‖ = ‖R‖F .

4. For v ∈ ∂U we have expW(v) = expW(−v), so that the injectivity radius of
Grn,m is π

2 .

Proof. See Section D.2 in the appendix. 2

With the help of Proposition 5.4.7 we can now show how the geodesic metric on
Grn,m is related to the principal angles. In particular, we will see that the Hausdorff
metric and the geodesic metric are equivalent.

Corollary 5.4.8. For W1,W2 ∈ Grn,m let dg(W1,W2) denote the geodesic distance
between W1 and W2. Then

dg(W1,W2) = ‖(α1, . . . , αm)‖2 =
√
α2

1 + . . .+ α2
m , (5.32)

where α1 ≤ . . . ≤ αm denote the principal angles betweenW1 andW2. In particular,
the Hausdorff metric and the geodesic metric are equivalent.

Furthermore, the map Grn,m → Grn,n−m, W 7→ W⊥, is an isometry if Grn,m
and Grn,n−m are both endowed with the geodesic metric.
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Proof. Let us fix W ∈ Grn,m, and let U ⊂ TW Grn,m be defined as in (5.30). By
Proposition 5.4.7, we get that every W ′ ∈ Grn,m is of the form W ′ = expW(v) for

some v =
[
Q,

(
0 −RT
R 0

)]
∈ U . Moreover, the geodesic distance between W and

W ′ is given by dg(W,W ′) = ‖R‖F . It remains to show that the principal angles
between W and W ′ are given by the singular values α1 ≥ . . . ≥ αm of R.

Note that as v ∈ U , we have α1 = ‖R‖ ≤ π
2 . By (5.22) we may assume

w.l.o.g. that R =
(
A
0

)
, with A = diag(α1, . . . , αm). To simplify the notation we

may furthermore assume that W = [In] and v =

In,
0 −A 0
A 0 0
0 0 0

.

A formula for the unit-speed geodesic (5.31) is given in (5.28). It follows that
an orthonormal basis of expW(v) is given by

{cos(αi) · ei + sin(αi) · em+i | i = 1, . . . ,m} ,

where e1, . . . , en ∈ Rn denote the canonical basis vectors. Note that an orthonormal
basis of W = [In] is given by {ei | i = 1, . . . ,m}. As αi ≤ π

2 , we have cos(αi) ≥ 0,
i = 1, . . . ,m. By Definition 5.4.1 we get that the principal angles between W and
expW(v) are given by α1, . . . , αm. This shows (5.32).

The equivalence of the Hausdorff metric and the geodesic metric follows from
(5.32) and (5.26) and the equivalence of the 2-norm and the ∞-norm.

The claim that the mapW 7→ W⊥ is an isometry, if Grn,m and Grn,n−m are both
endowed with the geodesic metric, follows from (5.32) and Proposition 5.4.3. 2

Remark 5.4.9. We content ourselves in this paper with the Hausdorff and the
geodesic metric on Grn,m. See [25, §4.3] for a longer list of common metrics on
Grn,m with the corresponding expressions in the principal angles.

5.5 Closest elements in the Sigma set

In this section we will provide a transition to the main result of this paper which
is the Grassmannian tube formula that we will prove in Chapter 6. Similar to as
we did for linear operators in Section 2.1.2 we will analyze how to perturb linear
subspaces so that the result contains a given point. This will give us a clear picture
about the geodesics towards the set Σm(C), C being a regular cone (cf. Section 2.3).

Recall that for C ⊂ Rn a regular cone the set Σm(C) was given by

Σm(C) = {W ∈ Grn,m | W ∩ int(C) = ∅ and W ∩ ∂C 6= {0}}

(cf. Definition 2.3.7). For a single point p ∈ Sn−1 we define

Σm(p) := {W ∈ Grn,m | p ∈ W} .

Note that we trivially have

Σm(C) ⊂
⋃
p∈∂K

Σm(p) , (5.33)

where K = C ∩ Sn−1.
Next, we will treat the question ‘Given some W0 6∈ Σm(p), what is the/a closest

element in Σm(p)?’. The following construction is natural: Let q be the projection
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of p on the subsphere S0 := W0 ∩ Sn−1, i.e., q = ‖ΠW0(p)‖−1 · ΠW0(p), where
ΠW0 denotes the orthogonal projection onto W0. The subspace W1 := W̄ + R p,
where W̄ := q⊥ ∩ W0, lies in Σm(p). It is obtained by rotating the point q ∈ W0

onto p while leaving the orthogonal complement q⊥ ∩W0 fixed. It is geometrically
plausible that this yields a closest point in Σm(p). Proposition 5.5.2 below shows
that this is true both for the geodesic or the Hausdorff distance. Moreover, the
above described point in Σm(p) is the unique element, which minimizes the geodesic
distance to W0. Before we give this proposition we introduce a notation, which
describes the above construction of W1.

Definition 5.5.1. For W ∈ Grn,m and x ∈ Rn \ W⊥ we define W(→ x) ∈ Grn,m
via

W(→ x) := (y⊥ ∩W) + Rx ,

where y := ΠW(x), and ΠW denotes the orthogonal projection onto W.

Recall that d(., .) denotes the spherical distance in Sn−1 (cf. Section 3.1).

Proposition 5.5.2. Let W0 ∈ Grn,m, S0 := W0 ∩ Sn−1, and p ∈ Sn−1 \ W⊥0 .
Furthermore, let

W1 :=W0(→ p) . (5.34)

Then the following holds:

1. W1 ∈ Σm(p),

2. dH(W0,W1) = dg(W0,W1) = d(p, S0),

3. d(p, S0) = dH(W0,Σm(p)) = dg(W0,Σm(p)),

4. W1 is the unique element in Σm(p), which minimizes the geodesic distance
to W0, i.e.,

{W1} = {W0(→ p)} = argmin{dg(W0,W) | W ∈ Σm(p)} . (5.35)

As a corollary we get a complete picture about closest elements in Σm(C).

Corollary 5.5.3. Let C ⊂ Rn be a regular cone and let K := C ∩ Sn−1.

1. Let W0 ∈ Grn,m and S0 := W0 ∩ Sn−1 such that W0 ∩ C = {0}. Then the
distance of W0 to Σm(C) is given by

dg(W0,Σm(C)) = dH(W0,Σm(C)) = d(S0,K) . (5.36)

Furthermore, the elements in Σm(C), which minimize the geodesic distance to
W0 are given by

argmin{dg(W0,W) | W ∈ Σm(C)} (5.37)

=
{
W0(→ p) | p ∈ argmin{d(p′, S0) | p′ ∈ ∂K}

}
.

2. If W0 ∈ Grn,m is such that W0 ∩ C 6= {0} then

dg(W0,Σm(C)) = dH(W0,Σm(C)) = d(S⊥0 , K̆) , (5.38)

where S⊥0 =W⊥0 ∩ Sn−1.
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Proof. (1) If we have W0 ∩ C = {0}, then the distance to Σm(C) is given by the
distance to the set {W | W ∩ C 6= {0}} (cf. Definition 2.3.7), i.e.,

d∗(W0,Σm(C)) = min{d∗(W0,W) | W ∩ C 6= {0}} ,

where d∗ = dg or d∗ = dH. Since {W | W ∩ C 6= {0}} =
⋃
p∈K Σm(p), we get

min{d∗(W0,W) | W ∩ C 6= {0}} = min{d∗(W0,Σm(p)) | p ∈ K}
Prop. 5.5.2

= min{d(S0, p) | p ∈ K}
= d(S0,K) ,

which shows (5.36). As for the equality in (5.37) note that we have

dg(W0,Σm(C)) = d(S0,K)
Prop. 5.5.2

= min{dg(W0,Σm(p)) | p ∈ ∂K} . (5.39)

From the inclusion in (5.33) and from (5.35) we thus get

argmin{dg(W0,W) | W ∈ Σm(C)}

⊆
{
W0(→ p) | p ∈ argmin{d(p′, S0) | p′ ∈ ∂K}

}
.

In fact, this inclusion also holds if the geodesic distance is replaced by the Hausdorff
distance. For the other inclusion we need to argue about the specific form of the
geodesic metric.

Let p ∈ argmin{d(p′, S0) | p′ ∈ K}, and let W1 := W0(→ p). By Proposi-
tion 5.5.2 the element W1 is the unique element in Σm(p), which minimizes the
distance to W0. Note that dim(W0 ∩W1) = m− 1, so that the first m− 1 principal
angles between W0 and W1 are 0. The unique shortest-length geodesic from W0

to W1 rotates the point q := ‖ΠW0(p)‖−1 · ΠW0(p) onto the point p and leaves
the subspace W̄ := q⊥ ∩ W0 invariant. Since d(p, S0) = d(K,S0), it follows that
W ∩ C = {0} for all W on the geodesic between W0 and W1. From this it follows
that W1 ∈ Σm(C), and as we have (5.39), the inclusion ‘⊇’ in (5.37) follows. This
finishes the proof of part (1) of the claim.

As for part (2) of the claim, recall from Proposition 5.4.4 and Corollary 5.4.8 that
the map Grn,m → Grn,n−m, W → W⊥, is an isometry if we consider both Grn,m
and Grn,n−m being endowed with the geodesic metric or both being endowed with
the Hausdorff metric. Furthermore, under this map we have a bijection Σm(C) →
Σn−m(C̆), so that d∗(W,Σm(C)) = d∗(W⊥,Σn−m(C̆)), where d∗ = dg or d∗ = dH.
So (5.38) follows from (5.36) via this duality. 2

Proof of Proposition 5.5.2. First of all, as p ∈ W1 we haveW1 ∈ Σm(p), so part (1)
of the claim is trivial.

Let X̄ ∈ Rn×(m−1) be such that the columns of X̄ form an orthonormal basis of
W̄ ⊆ W1 ∩W2. If we set

X0 :=
(
q X̄

)
, X1 :=

(
p X̄

)
∈ Rn×m , (5.40)

then the columns of Xi form an orthonormal basis of Wi, i = 0, 1. We get

XT
0 ·X1 =

(
qT p 0

0 Im−1

)
,

and arccos(qT p) = d(p, q) = d(p, S0). This implies

dH(W0,W1) = dg(W0,W1) = d(p, S0) .
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In particular, we have dg(W0,Σm(p)) ≤ d(p, S0).
As for part (3) of the claim note that if W ′1 ∈ Σm(p), i.e., p ∈ W ′1, then

dg(W0,W ′1) ≥ dH(W0,W ′1) ≥ min{α | S′1 ⊆ T (S0, α)} ≥ d(p, S0) .

This finishes the proof of the equalities dg(W0,Σm(p)) = dH(W0,Σm(p)) = d(p, S0).
To show part (4) of the claim let again W ′1 ∈ Σm(p). Furthermore, let X̄ ′ ∈

Rn×(m−1) be such that the columns of X̄ ′ form an orthonormal basis of p⊥ ∩W ′1,
and let X ′1 :=

(
p X̄ ′

)
∈ Rn×m. Then the columns of X ′1 form an orthonormal

basis of W ′1, and with X0 defined as in (5.40) we get

XT
0 X

′
1 =

(
qT p 0

0 X̄T X̄ ′

)
.

In particular, the singular values of XT
0 X

′
1 are given by qT p and the singular values

of X̄T X̄ ′. The singular values of X̄T X̄ ′ are all ≤ 1, as the largest of them is given
by the operator norm, and we have ‖X̄T X̄ ′‖ ≤ ‖X̄‖ · ‖X̄ ′‖ = 1. The singular values
are = 1, i.e., the arccosines of them are = 0, iff the columns of X̄ and the columns of
X̄ ′ span the same subspace. This equivalence is verified easily. As W1 = W̄ + R p,
we get part (4) of the claim. 2



Chapter 6

A tube formula for the
Grassmann bundle

In this chapter we will prove the main result of this paper, a formula for the volume
of the tube of the Sigma set in the Grassmann manifold. This formula is a general-
ization of Weyl’s classical tube formula for the sphere and can be interpreted as an
average case analysis of the Grassmann condition of the convex feasibility problem.

6.1 Main results

Throughout this chapter let C ⊂ Rn be a regular cone, and let K = C ∩ Sn−1.
Recall that in Section 2.3 we have defined the sets

FD
G (C) = {W ∈ Grn,m | W ∩ C 6= {0}} ,
FP

G(C) = {W ∈ Grn,m | W⊥ ∩ C̆ 6= {0}} .

Furthermore, the interior of the primal feasible set FP
G(C) is given by the dual

infeasible set ID
G(C) = {W ∈ Grn,m | W ∩ C = {0}}. The set of ill-posed inputs

(cf. Definition 2.3.7) is given by

Σm(C) = FD
G (C) ∩ FP

G(C)
= {W ∈ Grn,m | W ∩ int(C) = ∅ and W ∩ ∂C 6= {0}} . (6.1)

To ease the notation we will occasionally write Σm(K) instead of Σm(C), or we will
drop the brackets and simply write Σm.

Recall from Corollary 5.5.3 that for W ∈ Grn,m the geodesic distance of W to
Σm coincides with the Hausdorff distance of W to Σm. To take this into account,
let d∗(., .) denote in the following paragraph the geodesic or the Hausdorff distance.

As the Grassmann condition of a point W ∈ Grn,m is given by

CG(W) =
1

sin d∗(W,Σm)

(cf. Proposition 2.3.8), we define the (primal/dual) tube of radius α around Σm via

T (Σm, α) := {W ∈ Grn,m | d∗(W,Σm) ≤ α} ,
T P(Σm, α) := T (Σm, α) ∩ FP

G ,

T D(Σm, α) := T (Σm, α) ∩ FD
G ,

113
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where 0 ≤ α ≤ π
2 . Note that

T P(Σm, α) ∪ T D(Σm, α) = T (Σm, α) ,
T P(Σm, α) ∩ T D(Σm, α) = Σm .

Note also that the isometry Grn,m → Grn,n−m, W 7→ W⊥, induces a bijection
between T D(Σm(C), α) and T P(Σn−m(C̆), α). So it suffices to know formulas for
the (relative) volume of the primal tube T P(Σm, α). The primal tube has the
following simple characterization

T P(Σm, α) = {lin(S) | S ∈ Sm−1(Sn−1) , S ∩ int(K) = ∅ , d(S,K) ≤ α} , (6.2)

where Sm−1(Sn−1) denotes the set of (m − 1)-dimensional subspheres of Sn−1

(cf. Section 3.2). This characterization follows from the first part of Corollary 5.5.3.

Theorem 6.1.1. Let C ⊂ Rn be a regular cone and let K = C ∩ Sn−1. Then for
1 ≤ m ≤ n− 1 and 0 ≤ α ≤ π

2

rvol T P(Σm, α) ≤ 2m(n−m)
n

(
n/2
m/2

)
·
n−2∑
j=0

Vj(K)·
[
n− 2
j

]
·
n−2∑
i=0

|dnmij |·In,i(α) , (6.3)

where

•
(
n/2
m/2

)
= Γ(n+2

2 )

Γ(m+2
2 )·Γ(n−m+2

2 )
and

[
n−2
j

]
=

√
π·Γ(n−1

2 )

Γ( j+1
2 )·Γ(n−j−1

2 )
(cf. Section 4.1.4),

• Vj(K) denotes the jth spherical intrinsic volume of K (cf. Section 4.4),

• In,i(α) =
∫ α

0
cos(ρ)i · sin(ρ)n−2−i dρ (cf. Section 4.3), and

• the constants dnmij are defined for i+ j +m ≡ 1 (mod 2) and

0 ≤ i−j
2 + m−1

2 ≤ m− 1 , 0 ≤ i+j
2 −

m−1
2 ≤ n−m− 1 (6.4)

via

dnmij := (−1)
i−j
2 −

m−1
2 ·

( m−1
i−j
2 +m−1

2

)
·
( n−m−1
i+j
2 −

m−1
2

)(
n−2
j

) , (6.5)

and dnmij := 0 otherwise.

Furthermore, if α0 := sup{α | T (K,α) ∈ Kc(Sn−1)}, then for 0 ≤ α ≤ α0

rvol T P(Σm, α) =
2m(n−m)

n

(
n/2
m/2

)
·
n−2∑
j=0

Vj(K) ·
[
n− 2
j

]
·
n−2∑
i=0

dnmij ·In,i(α) . (6.6)

Remark 6.1.2. The most important part of the above theorem is the estimate
in (6.3), which holds for all 0 ≤ α ≤ π

2 . For the interesting choices of the cone C we
always have α0 = 0 (cf. Proposition 3.1.16), so the second part (6.6) of the theorem
yields no statement for these cases. Moreover, we will prove the equality in (6.6) in
Section 6.5 only for the case K ∈ Ksm(Sn−1). The reason for this restriction lies in
the fact that the map

αmax : K(Sn−1)→ R , K 7→ sup{α | T (K,α) ∈ K(Sn−1)}
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D7,1 =


1

1

1

1

1

1

 , D7,6 =


−1

1

−1

1

−1

1



D7,2 =


− 1

5

1 0 − 2
5

4
5 0 − 3

5
3
5 0 − 4

5
2
5 0 −1

1
5

 , D7,5 =


1
5

− 2
5 0 1

3
5 0 − 4

5

− 4
5 0 3

5

1 0 − 2
5

1
5



D7,3 =


1
10

− 2
5 0 3

10

1 0 − 3
5 0 3

5
3
5 0 − 3

5 0 1

3
10 0 − 2

5
1
10

 , D7,4 =


− 1

10
3
10 0 − 2

5

− 3
5 0 3

5 0 −1

1 0 − 3
5 0 3

5
2
5 0 − 3

10
1
10



Table 6.1: The coefficient matrix Dn,m = (dnmij )i,j=0,...,n−2.

is not continuous if n ≥ 3 (cf. Remark 3.1.17). In Section A.3 in the appendix we
will use the kinematic formula for an alternative computation of rvol T P(Σm, α)
for 0 ≤ α ≤ α0. As a corollary, this computation will allow us to transfer (6.6)
from Ksm(Sn−1) to K(Sn−1).

We may summarize that the assumption 0 ≤ α ≤ α0 is a very strong assump-
tion, which is not satisfied for most cases of interest. The estimate in (6.3) is a
stable result, which can be used for an average analysis of the Grassmann condition
(cf. Chapter 7).

Remark 6.1.3. We may (partly) recover from (6.6) Weyl’s tube formula by con-
sidering the case m = 1. In this case we have dn1

ij = δij . Using the identities from
Proposition 4.1.20, and using Oj · On−2−j · In,j(α) = On−1,j(α) and Ok−1 = k · ωk,
we get

rvol T P(Σ1, α)
(6.6)
= 2 · n− 1

n
· 2 · ωn−1

ωn
·
n−2∑
j=0

Vj(K) · Oj · On−2−j

2 · On−2
· In,j(α)

=
2
On−1

·
n−2∑
j=0

Vj(K) · On−1,j(α)

(4.39)
= 2 · voln−1 T (K,α)− voln−1K

On−1
.

This result is correct as T P(Σ1, α) is the projective image of T (K,α) \ int(K), and
vol Pn−1 = On−1

2 .
Nevertheless, this only yields part of Weyl’s spherical tube formula, which holds

for all 0 ≤ α ≤ π
2 , whereas (6.6) only holds for 0 ≤ α ≤ α0. The determination of

the largest α, for which (6.6) holds, remains an open problem for 1 < m < n− 1.
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The twisting coefficients dnmij appear in the following formal polynomial identity

(X − Y )m−1 · (1 +XY )n−m−1 =
n−2∑
i,j=0

(
n− 2
j

)
· dnmij ·Xn−2−j · Y n−2−i

(cf. proof of Proposition 6.4.6 in Section 6.4 below). In order to get a better feel-
ing for these coefficients, let us have a look at the coefficient matrices Dn,m ∈
R(n−1)×(n−1) where Dn,m = (dnmij )i,j=0,...,n−2. See Table 6.1 for a display of Dn,m

for some concrete values for n and m. This table shows that the nonzero coefficients
dnmij lie in a “perforated” rectangle in Dn,m, which is determined by the inequali-
ties (6.4) and the parity condition i+ j+m ≡ 1 (mod 2). The table also shows the
symmetries

dn,n−mi,n−2−j = ±dnmij , dnmn−2−i,n−2−j = ±dnmij .

Observe that a comparison between (6.6) and Weyl’s tube formula (4.39) re-
veals that basically the I-functions in the classical tube formula are replaced by the
“twisted I-functions”

∑n−2
i=0 d

nm
ij · In,i(α). In Section A.3 we will give some alterna-

tive formulas for the twisted I-functions by making use of the principal kinematic
formula.

In the following corollary we derive from Theorem 6.1.1 results about the rela-
tive volume of the whole tube T (Σm, α) from those results about the “half-tube”
T P(Σm, α).

Corollary 6.1.4. Let the notation be as in Theorem 6.1.1. Then for 0 ≤ α ≤ α0

rvol T (Σm, α) =
4m(n−m)

n

(
n/2
m/2

)
·
n−2∑
j=0

j≡n−m−1
mod 2

Vj(K)·
[
n− 2
j

]
·
n−2∑
i=0

dnmij ·In,i(α) , (6.7)

and for all 0 ≤ α ≤ π
2

rvol T (Σm, α) ≤ 4m(n−m)
n

(
n/2
m/2

)
·
n−2∑
j=0

Vj(K) ·
[
n− 2
j

]
·
n−2∑
i=0

|dnmij | ·In,i(α) . (6.8)

Proof. The isometry Grn,m → Grn,n−m, W 7→ W⊥, induces a bijection between
T D(Σm(C), α) and T P(Σn−m(C̆), α). So we get

rvol T (Σm(C), α) = rvol T P(Σm(C), α) + rvol T D(Σm(C), α)

= rvol T P(Σm(C), α) + rvol T P(Σn−m(C̆), α) ,

and Theorem 6.1.1 yields formulas resp. estimates for these quantities. Since Vj(K̆) =
Vn−2−j(K) (cf. Proposition 4.4.10) and

dn,n−mi,n−2−j = (−1)n−m−1−j · dnmij ,
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we get
n−2∑
j=0

Vj(K) ·
[
n− 2
j

]
·
n−2∑
i=0

dnmij · In,i(α) +
n−2∑
j=0

Vj(K̆) ·
[
n− 2
j

]
·
n−2∑
i=0

dnmij · In,i(α)

=
n−2∑
j=0

Vj(K) ·
[
n− 2
j

]
·
n−2∑
i=0

(dnmij + dnmi,n−2−j) · In,i(α)

= 2 ·
n−2∑
j=0

j≡n−m−1
mod 2

Vj(K) ·
[
n− 2
j

]
·
n−2∑
i=0

dnmij · In,i(α) .

This implies the exact formula (6.7). The estimate (6.8) follows analogously with
the observation |dn,n−mi,n−2−j | = |dnmij |, so that we have no cancellation in this case. 2

Finally, we consider the asymptotics of the tube formulas for α→ 0. Note that
for the I-functions we have the asymptotics (cf. Section 4.3)

In,i(α) ∼ 1
n−1−i · α

n−1−i for α→ 0 . (6.9)

From this we can derive an asymptotic estimate of the relative volume of the tube
around Σm, that we state in the following corollary.

Corollary 6.1.5. Let the notation be as in Theorem 6.1.1. If α0 > 0, then for
α→ 0 we have

rvol T (Σm, α) = 8 ·
Γ(m+1

2 )
Γ(m2 )

·
Γ(n−m+1

2 )
Γ(n−m2 )

· Vn−m−1(K) · α+O(α2) (6.10)

< 4 ·
√
m(n−m) · Vn−m−1(K) · α+O(α2) ,

where the constant in the O-notation may depend on n, m, and K. In the case
α0 = 0 the equality (6.10) still holds as an inequality.

Proof. The asymptotics of the I-functions in (6.9) show that the linear term of the
tube formulas (6.7) and (6.8) arises from the summands which involve In,n−2(α).
The constant dnmij for i = n − 2 is zero except for j = n −m − 1, where it has the

value
(
n−2
m−1

)−1
. Using the identities from Proposition 4.1.20 we compute

4m(n−m)
n

·

(
n/2
m/2

)
·
[
n−2
m−1

](
n−2
m−1

) (4.21)
=

4m(n−m)
n

·

(
n/2
m/2

)(
(n−2)/2
(m−1)/2

)
(4.18)

= 8 ·
Γ(m+1

2 )
Γ(m2 )

·
Γ(n−m+1

2 )
Γ(n−m2 )

.

From the estimate Γ(z + 1
2 ) <

√
z · Γ(z) (cf. Section 4.1.4) we finally get

Γ(m+1
2 )

Γ(m2 )
·

Γ(n−m+1
2 )

Γ(n−m2 )
<

√
m(n−m)

2
. 2

Remark 6.1.6. The asymptotic question as treated in Corollary 6.1.5 falls in the
domain of so-called contact measures. This was initiated by Firey in [27] (see [50,
§4] for an overview of the development of this topic). While originally only con-
sidered in euclidean space, contact measures were also considered in more general
spaces like the sphere and hyperbolic space, and even in general homogeneous spaces
(see [56], [57], [58]). So the formula (6.10) has been known before.
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6.1.1 Proof strategy

The main idea of the proof is the following. First of all, we will show that for
the estimate (6.3) it suffices to assume that K ∈ Ksm(Sn−1) is a smooth cap.
In this case, if a subspace W ∈ Grn,m lies in Σm, i.e., if it touches the cap K,
then it intersects K in exactly one point. This intersection point p lies in the
boundary ∂K =: M , which is a hypersurface of the unit sphere Sn−1. So W is a
subspace of TpM + R p. Conversely, if we choose a point p ∈M , and if we choose a
(m−1)-dimensional subspace Y in the tangent space TpM , then the m-dimensional
subspace W := Y + R p touches the cap K in the point p and thus lies in Σm.

This construction indicates that for K ∈ Ksm(Sn−1) the set Σm is a smooth
manifold. More precisely, denoting by Gr(M,m − 1) the (m − 1)th Grassmann
bundle, i.e.,

Gr(M,m− 1) = {(p,Y) | p ∈M , Y ⊆ TpM (m− 1)-dimensional subspace} ,

we will show in Section 6.2 the map

Em : Gr(M,m− 1)→ Σm , (p,Y) 7→ Y + R p

is a diffeomorphism. The main steps in the proof of Theorem 6.1.1 are now the
following.

1. For the inequality (6.3) reduce the general case to the case K ∈ Ksm(Sn−1); the
equality (6.6) we will only prove in the case K ∈ Ksm(Sn−1) (see Section A.3
in the appendix for the transfer to general K ∈ K(Sn−1)).

2. Describe a parametrization of Σm, which shows that Σm is an orientable
hypersurface of Grn,m, and find formulas for its tangent and its normal spaces.

3. If, starting at a point W ∈ Σm, we track the geodesic on Grn,m in normal
direction up to a distance of α, and if we do this for every W ∈ Σm, then we
will get a surjection of the tube T P(Σm, α) resp. T D(Σm, α) depending on the
normal direction. More precisely, let us denote

Υ: Σm × R→ Grn,m , (W, ρ) 7→ expW(ρ · νΣ(W)) ,

where νΣ denotes a unit normal field on Σ. Restricting the second component
to an interval [0, α] resp. [−α, 0] implies that the image of Υ is the primal
tube of radius α resp. the dual tube of radius α, depending on the direction
of νΣ. With the aid of the coarea formula, we will get an upper bound for the
volume of the corresponding α-tube around Σm.

4. It will turn out that in order to get the formulas in Theorem 6.1.1 we will have
to compute the expectation of a certain (twisted) characteristic polynomial.
Computing this expectation we will finish the proof of Theorem 6.1.1 (for
K ∈ Ksm(Sn−1) in the equality case).

We finish this section with a lemma that covers the first step. The following three
sections will treat the remaining steps, and Section 6.5 will combine the different
steps to complete the proof of Theorem 6.1.1.

Lemma 6.1.7. For α ≥ 0 the function

K(Sn−1)→ R , K 7→ rvol T P(Σm(K), α)

is uniformly continuous.
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Proof. The proof goes analogously to the proof of Lemma 4.4.2. It suffices to show
that the map is continuous, as K(Sn−1) is compact (cf. Proposition 3.2.3). From
the characterization of the primal tube in (6.2) we get for K1,K2 ∈ K(Sn−1)

K1 ⊆ T (K2, ε) ⇒ T P(Σm(K1), α) ⊆ T P(Σm(K2), α+ ε) . (6.11)

Let (Ki)i be a sequence in K(Sn−1), which converges to K ∈ K(Sn−1). We need
to show that rvol T P(Σm(Ki), α) converges to rvol T P(Σm(K), α).

For all ε > 0 there exists N ∈ N such that dH(K,Ki) < ε, i.e., K ⊆ T (Ki, ε)
and Ki ⊆ T (K, ε), for all i ≥ N . From (6.11) we thus get for i ≥ N

T P(Σm(K), α) ⊆ T P(Σm(Ki), α+ ε) , T P(Σm(Ki), α) ⊆ T P(Σm(K), α+ ε) .

In particular, we have

rvol T P(Σm(K), α) ≤ rvol T P(Σm(Ki), α+ ε) ,
rvol T P(Σm(Ki), α) ≤ rvol T P(Σm(K), α+ ε) ,

for all i ≥ N . This implies

rvol T P(Σm(K), α) ≤ lim inf
i→∞

rvol T P(Σm(Ki), α+ ε) ,

lim sup
i→∞

rvol T P(Σm(Ki), α) ≤ rvol T P(Σm(K), α+ ε) .

Letting ε→ 0, we get rvol T P(Σm(K), α) = limi→∞ rvol T P(Σm(Ki), α). 2

6.2 Parametrizing the Sigma set

The goal of this section is to show that for K ∈ Ksm(Sn−1) the set Σm(K) is a
smooth orientable hypersurface of Grn,m, and to describe its tangent and normal
spaces.

Before we state the main theorem let us recall the notion of the Grassmann
bundle. Let M be a d-dimensional Riemannian manifold. The kth Grassmann
bundle over M , 0 ≤ k ≤ d, is given by

Gr(M,k) = {(p,Y) | p ∈M , Y ⊆ TpM k-dimensional subspace}

=
⋃
p∈M
{p} ×Gr(TpM,k) ,

where Gr(TpM,k) := {Y ⊆ TpM k-dimensional subspace}.
To see that the Grassmann bundle is indeed a manifold, let ϕ : Rd → M be a

parametrization of an open subset U of M . This defines a local trivialization of the
Grassmann bundle

Φ: Rd ×Grd,k
∼−→ Gr(U, k) , (x,X ) 7→

(
ϕ(x), Dxϕ(X )

)
. (6.12)

If ψ : Rk(d−k) → Grd,k denotes a parametrization of an open subset of the Grass-
mann manifold Grd,k, then we can combine this with the local trivialization Φ via

Ψ: Rd × Rk(d−k) → Gr(M,k) , (x,X) 7→ Φ(x, ψ(X)) . (6.13)
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The map Ψ is thus a parametrization of an open subset of the Grassmann bundle
Gr(M,k). For the proof that Gr(M,k) is indeed a smooth manifold, it remains to
show that different parametrizations ϕ̃ and ψ̃ give rise to a smooth transition map

Ψ−1 ◦ Ψ̃ : Rd × Rk(d−k) � Rd × Rk(d−k) .

This is a straightforward exercise.
Note that the dimension of Gr(M,k) is given by

dim Gr(M,k) = d+ k(d− k) ,

where d = dimM . In particular, for d = n− 2 and k = m− 1 we get

dim Gr(M,m− 1) = n− 2 + (m− 1)(n−m− 1) = m(n−m)− 1
= dim Grn,m −1 .

Theorem 6.2.1. Let K ∈ Ksm(Sn−1) and M := ∂K, and let Em denote the map

Em : Gr(M,m− 1)→ Grn,m , (p,Y) 7→ Y + R p . (6.14)

Then Em is an injective smooth map whose image is given by Σm(K). In partic-
ular, Σm(K) is a hypersurface in Grn,m and isomorphic to the Grassmann bundle
Gr(M,m−1). Additionally, the hypersurface Σm(K) is orientable, i.e., there exists
a global unit normal vector field νΣ on Σm(K).

The fact that Em is a bijection between Gr(M,m − 1) and Σm follows from
simple arguments from spherical convex geometry. Therefore, we will treat this
claim in the following lemma.

Lemma 6.2.2. Let K ∈ Ksm(Sn−1) and M := ∂K, and let Em be defined as
in (6.14). Then Em is a bijection between Gr(M,m − 1) and Σm, and its inverse
is given by

E−1
m (W) = (p,W ∩ p⊥) , where W ∩K = {p} . (6.15)

Proof. As in Section 4.1.2 let ν : M → Rn denote the unit normal field such that
ν(p) points inside the cap K for p ∈M = ∂K. If (p,Y) ∈ Gr(M,m−1), thenW :=
Y + R p does not intersect the interior of the cone C := cone(K), as W ⊆ ν(p)⊥.
Therefore, by (6.1) we have W ∈ Σm. On the other hand, if W ∈ Σm, then by
Proposition 4.1.11 the intersectionW∩K consists of a single point p. Moreover, for
Y :=W∩p⊥ ∈ Gr(TpM,m−1) we have Em(p,Y) =W. We may conclude, that Em
is a bijection between Gr(M,m− 1) and Σm, and its inverse is given by (6.15). 2

To clarify the role of convexity for the proof of Theorem 6.2.1 we will drop the
convexity assumption in the following lemmas.

Lemma 6.2.3. Let M ⊂ Sn−1 be a submanifold and let 0 ≤ m− 1 ≤ dimM =: d.
Then the map Em as defined in (6.14) is smooth.

Proof. This claim follows from choosing a parametrization ϕ : Rd →M and checking
that the map

Φ̃: Rd ×Grd,m−1 → Grn,m , (x,Y) 7→ Rϕ(x) +Dxϕ(Y)

is smooth. This is again a straightforward exercise. The restriction of Em to
Gr(U,m− 1) is then given by Φ̃ ◦ Φ−1, where Φ is defined as in (6.12), and thus a
smooth map. 2
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For the computation of the derivative of the map Em, we do not need an explicit
model of the tangent spaces of the Grassmann bundle Gr(M,m− 1). Nevertheless,
it might be helpful to know about the natural decomposition of the tangent space
in the direct sum of the vertical space and the horizontal space, that we describe in
the following remark.

Remark 6.2.4. Let M ⊂ Sn−1 be a hypersurface and 1 ≤ m ≤ n− 1. For (p,Y) ∈
Gr(M,m − 1) the tangent space of Gr(M,m − 1) in (p,Y) has a decomposition in
the direct sum

T(p,Y) Gr(M,m− 1) = T v(p,Y) Gr(M,m− 1)⊕ Th(p,Y) Gr(M,m− 1) .

The components T v(p,Y) Gr(M,m−1) and Th(p,Y) Gr(M,m−1) are called the vertical
space and the horizontal space, respectively. The vertical space is given by the
tangent space of the fiber {p}×Gr(TpM,m−1), which is a submanifold of the fiber
bundle Gr(M,m− 1), i.e.,

T v(p,Y) Gr(M,m− 1) = T(p,Y)({p} ×Gr(TpM,m− 1)) .

As for the horizontal space, let c : R→ M , c(0) = p, be a curve through p, and let
Yt denote the parallel transport of Y along c at time t (cf. Remark 4.1.2). Then the
map ch : R → Gr(M,m − 1), ch(t) = (c(t),Yt), is a curve through ch(0) = (p,Y)
and thus defines a tangent vector ċh(0) ∈ T(p,Y) Gr(M,m−1). It can be shown that
this tangent vector only depends on the tangent vector ċ(0) ∈ TpM , and that the
induced map

TpM → T(p,Y) Gr(M,m− 1)

is a linear injection. The horizontal space is defined as the image of this linear
injection, so that

Th(p,Y) Gr(M,m− 1) ' TpM .

Additionally, it can be shown that the intersection of the horizontal and the vertical
space only consists of the zero vector, which is geometrically obvious.

For the computation of the derivative of the map Em we need to use the specific
model of Grn,m that we described in Section 5.3.2. Recall that we have identified the
Grassmann manifold with the homogeneous space Grn,m ∼= O(n)/(O(m) × O(n −
m)). See Section 5.3 and Section 5.3.2 for a description of the tangent spaces of
Grn,m and the Riemannian metric on them. The following lemma separately de-
scribes the images of vertical vectors and of horizontal vectors in T(p,Y) Gr(M,m− 1)
(cf. Remark 6.2.4) under the derivative of Em.

Lemma 6.2.5. Let M ⊂ Sn−1 be a hypersurface with unit normal field ν, and let
1 ≤ m ≤ n− 1. Furthermore, let (p,Y) ∈ Gr(M,m− 1), and let ζ1, . . . , ζn−2 be an
orthonormal basis of TpM such that Y = lin{ζ1, . . . , ζm−1}. Then

Q :=
(
p ζ1 · · · ζn−2 ν(p)

)
∈ O(n) , (6.16)

and W := Em(p,Y) = [Q], where Em is defined as in (6.14). The derivative of the
map Em at (p,Y) is given in the following way:

1. (vertical) Let w : R → Grn−2,m−1 be a curve through w(0) = Rm−1 × {0}.
Furthermore, let cv : R→ Gr(M,m− 1) be defined by

cv(t) :=
(
p , {x1 ζ1 + . . .+ xn−2 ζn−2 | (x1, . . . , xn−2) ∈ w(t)}

)
, (6.17)
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so that cv(0) = (p,Y). Then

D(p,Y)Em(ċv(0)) =
[
Q ,

(
0 −RTv
Rv 0

)]
, (6.18)

where

Rv =

 0
...
0

X̄

0 0 ··· 0

 ∈ R(n−m)×m ,

with X̄ ∈ R(n−m−1)×(m−1) given by ẇ(0) =
[
In−2,

(
0 −X̄T

X̄ 0

)]
.

2. (horizontal) Let c : R → M with c(0) = p and ζ := ċ(0) ∈ TpM , and let
Yt denote the parallel transport of Y along c at time t (cf. Theorem 4.1.1,
resp. Remark 4.1.2). Then

ch : R→ Gr(M,m− 1) , ch(t) := (c(t),Yt) (6.19)

satisfies ch(0) = (p,Y). The image of the tangent vector ċh(0) under the
derivative of Em is given by

D(p,Y)Em(ċh(0)) =
[
Q ,

(
0 −RTh
Rh 0

)]
, (6.20)

where

Rh =


am
...

an−2

0

0 b1 ··· bm−1

 ∈ R(n−m)×m ,

and the coefficients a1, . . . , an−2, b1, . . . , bn−2 being given by

ζ =
n−2∑
i=1

ai · ζi and Wp(ζ) =
n−2∑
i=1

bi · ζi ,

with Wp denoting the Weingarten map of M at p (cf. Section 4.1.1).

Proof. As for the first part, let the curve w in Grn−2,m−1 be represented by the
curve Q̄ : R → O(n − 2) through Q̄(0) = In−2, i.e., w(t) = [Q̄(t)]. It is easily seen
that the image of the curve cv under the map Em is given by

Em ◦ cv(t) = [Qv(t)] , Qv(t) := Q ·

1
Q̄(t)

1

 . (6.21)

Note that Qv(0) = Q, as Q̄(0) = In−2. Therefore, the derivative of Em ◦ cv(t) in 0
is given as stated in (6.18).

For the second part, let vi : R → Rn be the parallel transport of ζi along c,
i = 1, . . . , n− 2, and let

Qh(t) :=
(
c(t) v1(t) · · · vn−2(t) ν(c(t))

)
∈ O(n) . (6.22)

The fact that Qh(t) is an orthogonal matrix follows from the fact that the vectors
v1(t), . . . , vn−2(t) form an orthonormal basis of Tc(t)M (cf. Theorem 4.1.1), and
TqM ⊂ TqSn−1 = q⊥ for q ∈M . It follows that Qh(0) = Q, and we have

Em ◦ ch(t) = [Qh(t)] .
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From Lemma 4.1.8 we know that the derivative of Qh at 0 is given by

Q̇h(0) = Q ·


0 −a1 ··· −an−2 0
a1 0 ··· 0 −b1
...

...
...

...
an−2 0 ··· 0 −bn−2

0 b1 ··· bn−2 0

 . (6.23)

From this we get that the derivative of [Qh(t)] at 0 is given by (6.20). 2

In the setting of Lemma 6.2.5 we collect all tangent vectors in TW Grn,m of the
form (6.18) in the set T vW , i.e.,

T vW := {D(p,Y)Em(ċv(0)) | cv : R→ Gr(M,m− 1) given as in (6.17)} . (6.24)

Furthermore, we collect all tangent vectors of the form (6.20) in the set ThW , i.e.,

ThW := {D(p,Y)Em(ċh(0)) | ch : R→ Gr(M,m− 1) given as in (6.19)} . (6.25)

In other words, the sets T vW and ThW are the images of the vertical and the horizontal
space (cf. Remark 6.2.4) of Gr(M,m− 1) under the derivative of Em, respectively.
The following lemma gives a more detailed description of these sets.

Corollary 6.2.6. Let the setting be as in Lemma 6.2.5. The sets T vW and ThW as
defined in (6.24) and (6.25) are linear subspaces of TW Grn,m of dimensions

dim(T vW) = (m− 1)(n−m− 1) , dim(ThW) = n−m− 1 + rk(Wp,Y) ,

where Wp,Y is defined by

Wp,Y : Y → Y , Wp,Y(ζ) := ΠY ◦Wp(ζ) , (6.26)

ΠY denoting the orthogonal projection onto Y. A basis for T vW is given by

ξvij :=

Q ,


0 0 0
− ĒTij 0

0 Ēij 00 0


 , 1 ≤ i ≤ n−m− 1 , 1 ≤ j ≤ m− 1 ,

where Ēij ∈ R(n−m−1)×(m−1) denotes the (i, j)th elementary matrix. The space ThW
is spanned by the vectors

ξhk :=

Q ,


0 −âTk 0
0 − b̄k

âk 0 0
0 b̄Tk


 , 1 ≤ k ≤ n− 2 ,

where

âk =


(0 , . . . , 0)T if 1 ≤ k ≤ m− 1

(0, . . . , 0, 1
↑

k−m+1

, 0, . . . , 0)T if m ≤ k ≤ n− 2 ,

b̄k = ( 〈Wp(ζk), ζ1〉 , . . . , 〈Wp(ζk), ζm−1〉 )T .

If rk(Wp,Y) = m− 1, then ξh1 , . . . , ξ
h
n−2 form a basis of ThW .
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Proof. From (6.18) in Lemma 6.2.5 it follows that T vW is a linear space of dimension
(m− 1)(n−m− 1), and an orthonormal basis of T vW is given by the vectors ξvij . As
for the set ThW , let ξ ∈ ThW be given as in (6.20). The coefficient vector â is then the
representation of the projection of ζ onto Y⊥ w.r.t. the basis ζm, . . . , ζn−2 of Y⊥.
Furthermore, the coefficient vector b̄ is the representation of Wp,Y(ζ) w.r.t. the
basis ζ1, . . . , ζm−1 of Y. It follows that ThW is a linear subspace of the tangent space
TW Grn,m. As for the dimension, note that writing the vectors â1, . . . , ân−2 and
b̄1, . . . , b̄n−2 in a matrix yields(

b̄1 · · · b̄n−2

â1 · · · ân−2

)
=
(
B̄ ∗
0 In−m−1

)
, (6.27)

where B̄ ∈ R(m−1)×(m−1) denotes the transformation matrix of Wp,Y with respect
to the basis ζ1, . . . , ζm−1 of Y. Therefore, the dimension of ThW is given by the rank
of the matrix in (6.27), and we have

dim(ThW) = n−m− 1 + rk(Wp,Y) . 2

We may now give the proof of Theorem 6.2.1.

Proof of Theorem 6.2.1. In Lemma 6.2.2 we have seen that Em is bijective, and
in Lemma 6.2.3 we have seen that Em is smooth. For the proof that Em is an
embedding, it remains to show that the derivative of Em has everywhere full rank.

The sets T vW and ThW defined in (6.24) and (6.25) lie by definition in the image
of the derivative of Em at (p,Y). In Corollary 6.2.6 we have seen that T vW and ThW
are linear subspaces of TW Grn,m, which lie orthogonal to each other. Furthermore,
we have seen that the dimension of ThW depends on the rank of the restriction of
the Weingarten map to Y, as defined in (6.26). Recall that the Weingarten map
Wp is positive definite, as M = ∂K and K ∈ Ksm(Sn−1) (cf. Remark 4.1.5 and
Definition 4.1.9). This implies that also Wp,Y is positive definite, and therefore
rk(Wp,Y) = m− 1. It follows that

rk(D(p,Y)Em) ≥ dim(T vW) + dim(ThW) = m(n−m)− 1
= dim Gr(M,m− 1) .

So Em is an embedding of Gr(M,m − 1) in Grn,m, and its image is given by Σm.
In particular, Σm is a hypersurface of Grn,m, as the dimension of Gr(M,m − 1) is
given by dim Gr(M,m− 1) = dim Grn,m−1. Moreover, the tangent space of Σm at
W decomposes into TWΣm = T vW ⊕ ThW , and we can define a unit normal field νΣ

on Σm by setting

νΣ(W) :=

Q ,
 0 0 −1

0 0
0 0 01 0


 ∈ TW Grn,m , (6.28)

where Q ∈ O(n) is defined as in (6.16). This finishes the proof. 2

Remark 6.2.7. In the above proof we have shown that the rank of the derivative
of Em is at least as big as dim(T vW) + dim(ThW). In fact, as the tangent space
of Gr(M,m − 1) decomposes into the vertical and the horizontal space (cf. Re-
mark 6.2.4), and as T vW and ThW are the images of these spaces under the derivative
of Em, we have

rk(D(p,Y)Em) = dim(T vW) + dim(ThW) .
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Therefore, (p,Y) ∈ Gr(M,m−1) is a critical point of the map Em, iff the restricted
Weingarten map Wp,Y is rank-deficient.

Remark 6.2.8. Recall that Σm = FD
G ∩ FP

G, so Grn,m \Σm decomposes into two
disjoint components. The normal field νΣ as defined (6.28) points into the compo-
nent FD

G . This is seen in the following way. Let the notation be as in Theorem 6.2.1.
Defining w : R→ Grn,m, w(ρ) := [Q ·Qρ], with

Qρ :=

cos(ρ) − sin(ρ)

In−2

sin(ρ) cos(ρ)

 ,

we get w(0) =W, and ẇ(0) = νΣ(W). The point pρ := cos(ρ) p+ sin(ρ) ν(p) lies in
w(ρ), and for small enough ρ > 0 we have pρ ∈ int(K), as the unit normal field ν
of M is chosen such that ν(p) points inside the cap K. Therefore, for small enough
ρ > 0 we have w(ρ) ∈ FD

G .

From now on we assume that M = ∂K with K ∈ Ksm(Sn−1). Furthermore,
we denote the sets T vW and ThW from (6.24) and (6.25) by T vWΣm and ThWΣm,
respectively. These subspaces are called the vertical and the horizontal space of Σm
at W. Note that the tangent space of Σm at W decomposes orthogonally into the
vertical and the horizontal space, i.e.,

TWΣm = T vWΣm ⊕ ThWΣm .

Note also that a basis of TWΣm is thus given by

ξvij , i = 1, . . . , n−m− 1, j = 1, . . . ,m− 1 ; ξhk , k = 1, . . . , n− 2 ,

defined as in Corollary 6.2.6.
We finish this section with a view on the canonical projection map

ΠM : Σm →M , W 7→ p , where W ∩K = {p} . (6.29)

The following lemma is about the fiber Π−1
M (p), p ∈ M . Note that if we have

chosen an orthonormal basis of TpM , we may identify the set Gr(TpM,m− 1) with
Grn−2,m−1. In particular, Gr(TpM,m−1) is endowed with a canonical Riemannian
metric. This Riemannian metric is independent of the chosen orthonormal basis
of TpM . In fact, this also follows from the following lemma.

Lemma 6.2.9. Let ΠM : Σm → M denote the canonical projection map as given
in (6.29), and let p ∈ M . Then the fiber Π−1

M (p) is a submanifold of Σm, which is
isometric to Gr(TpM,m− 1) via the mutually inverse maps

Π−1
M (p)→ Gr(TpM,m− 1) , W 7→ W ∩ p⊥ ,

Gr(TpM,m− 1)→ Π−1
M (p) , Y 7→ Y + R p .

Additionally, the Normal Jacobian of the derivative of ΠM at W ∈ Π−1
M (p) is given

by
ndet(DWΠM ) = det(Wp,Y)−1 ,

where Wp,Y denotes the restriction of the Weingarten map of M at p to the subspace
Y :=W ∩ p⊥, as defined in (6.26).
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Proof. The projection ΠM can be written in the form

ΠM = Π1 ◦ E−1
m , (6.30)

where Em is defined as in (6.14), and Π1 : Gr(M,m−1)→M denotes the projection
on the first component. Therefore, we have

Π−1
M (p) = Em({p} ×Gr(TpM,m− 1)) .

In particular, Π−1
M (p) is a submanifold of Σm, which is diffeomorphic to {p} ×

Gr(TpM,m−1) ' Gr(TpM,m−1) via the above given maps. As for the claim that
this is an isometry, note that (6.30) implies that the kernel of the derivative of ΠM

is given by the vertical space, i.e.,

TWΠ−1
M (p) = ker(DWΠM ) = T vWΣm .

An orthonormal basis of the vertical space is given by {ξvij | 1 ≤ i ≤ n−m− 1, 1 ≤
j ≤ m − 1}. It is easily seen that this orthonormal basis maps to an orthonormal
basis in Gr(TpM,m− 1) ' Grn−2,m−1.

As for the claim about the Normal Jacobian, note that the orthogonal comple-
ment of the kernel of the derivative of ΠM is given by the horizontal space. A basis
of ThWΣm is given by ξh1 , . . . , ξ

h
n−2, defined as in Corollary 6.2.6. It is easily seen

that we have
DWΠM (ξhk ) = ζk ∈ TpM , k = 1, . . . , n− 2 .

As ζ1, . . . , ζn−2 describe an orthonormal basis of TpM , the Normal Jacobian of
DWΠM is given by the inverse of the volume of the parallelepiped spanned by the
vectors ξh1 , . . . , ξ

h
n−2 in ThWΣm. This volume is given by (cf. (6.27)) |det(Wp,Y)| =

det(Wp,Y), as Wp and thus also Wp,Y is positive definite. 2

6.3 Computing the tube

In this section we will compute the Normal Jacobian of the canonical surjection Υ
of the tube around Σm, given by

Υ: Σm × R→ Grn,m , (W, ρ) 7→ expW(ρ · ν(W)) , (6.31)

where exp denotes the exponential map in Grn,m, and νΣ : Σm → T⊥Σm denotes
the unit normal field as defined in (6.28). Geometrically, the image Υ(W, ρ) is
obtained by rotating the intersection point p ∈ M ∩W, i.e., W ∩K = {p}, for an
angle ρ in normal direction away from the cap K, and keeping the subspace p⊥∩W
fixed (cf. Section 5.5).

Proposition 6.3.1. Let K ∈ Ksm(Sn−1) and M := ∂K, and let Σm := Σm(K).
For W ∈ Σm and W ∩K = {p}, let ζ1, . . . , ζn−2 be an orthonormal basis of TpM
such that the intersection Y :=W∩p⊥ is given by Y = lin{ζ1, . . . , ζm−1}. Then the
Normal Jacobian of D(W,ρ)Υ, where Υ is defined as in (6.31), is given by

ndet(D(W,ρ)Υ) =

∣∣∣∣det
((

cos(ρ) · Ī 0
0 − sin(ρ) · Î

)
· Λ +

(
sin(ρ) · Ī 0

0 cos(ρ) · Î

))∣∣∣∣
det(Wp,Y)

,



6.3 Computing the tube 127

where Ī , Î denote the (m − 1)th and (n − m − 1)th identity matrix, respectively,
Wp,Y denotes the restricted Weingarten map (cf. (6.26)), and where Λ denotes the
representation matrix of the Weingarten map Wp of M at p, i.e.,

Λ =

(
λ11 ··· λn−2,1

...
...

λ1,n−2 ··· λn−2,n−2

)
, λk` := 〈Wp(ζk), ζ`〉 .

Proof. Let Q ∈ O(n) be given as in (6.16), so that W = [Q]. Then the map Υ is
given by (cf. Example 5.4.6)

Υ(W, ρ) = [Q ·Qρ] , Qρ :=

cos(ρ) − sin(ρ)

In−2

sin(ρ) cos(ρ)

 .

Furthermore, we have seen in (5.29) in Example 5.4.6 (in a slightly different nota-
tion) that the derivative of Υ is in the second component given by

D(W,ρ)Υ(0, 1) =

Q ·Qρ ,
 0 0 −1

0 0
0 0 01 0


 . (6.32)

Here, we use the same block decomposition as in Lemma 6.2.6.
The computation of the derivative of Υ on the first component is more compli-

cated. In the following paragraph we describe an outline of the general approach.
Let ξ ∈ TW Grn,m be given by ξ =

[
Q,
(

0 −RT
R 0

)]
, with R ∈ R(n−m)×m. Fur-

thermore, let Q̃ : R→ O(n) be such that Q̃(0) = Q and such that the induced curve
in Grn,m satisfies [Q̃(t)] ∈ Σm and d

dt [Q̃(t)](0) = ξ. Recall from Section 5.3.2 that

in this case the matrix
(

0 −RT
R 0

)
∈ Skewn is the orthogonal projection of the ma-

trix U ∈ Skewn, which is defined by d
dt Q̃(0) = QU ∈ TQO(n), onto the horizontal

space Skewn. We will choose the curve Q̃ such that the map Υ is given by

Υ([Q̃(t)], ρ) = [Q̃(t) ·Qρ] . (6.33)

In this case we have (cf. Example 5.4.6)

D(W,ρ)Υ(ξ, 0) =
[
Q ·Qρ ,

(
0 −RTξ
Rξ 0

)]
,

where Q ·Qρ ·
(

0 −RTξ
Rξ 0

)
∈ TQ·QρO(n) is the horizontal component of

d
dt (Q̃(t) ·Qρ)(0) = QU ·Qρ = (Q ·Qρ) · (QTρ · U ·Qρ) ∈ TQ·QρO(n) .

So in order to compute the derivative of Υ we need to

• choose a basis of TW Grn,m,

• find corresponding curves Q̃ in O(n) whose images in Grn,m lie in Σm, and
which satisfy (6.33),

• compute the (horizontal component of) the conjugation QTρ · U · Qρ of the
corresponding skew-symmetric matrix U .
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Of course, the basis we choose will be the basis that we described in Corollary 6.2.6.
For ξv ∈ T vWΣm given by

ξv =

Q ,


0 0 0
− X̄T 0

0 X̄ 00 0




with X̄ ∈ R(n−m−1)×(m−1) as in (6.18) in Lemma 6.2.5, a defining curve in O(n) is
given by (cf. (6.21))

Qv(t) = Q ·

1
Q̄(t)

1

 ,

where Q̄ : R→ O(n−2) with Q̄(0) = In−2 is such that d
dt Q̄(0) =

(
0 −X̄T
X̄ 0

)
. In this

case we have

d
dtQv(0) = Q ·


0 0 0

− X̄T 0

0 X̄ 00 0

 .

It is easily seen that for Wv
t := [Qv(t)] we have Wv

t ∩K = {p} for all t. Moreover,
the first column of Qv(t) is given by p, and the last column of Qv(t) is given by ν(p).
This implies that we indeed have

Υ([Qv(t)], ρ) = [Qv(t) ·Qρ] .

Therefore, as

QTρ ·


0 0 0

− X̄T 0

0 X̄ 00 0

 ·Qρ =


0 0 0

− X̄T 0

0 X̄ 00 0

 ,

we have

D(W,ρ)Υ(ξv, 0) =

Q ·Qρ ,


0 0 0
− X̄T 0

0 X̄ 00 0


 . (6.34)

For ξh ∈ ThWΣm given by

ξh =

Q ,


0 −âT 0
0 − b̄

â 0 0
0 b̄T




with â ∈ Rn−m−1 and b̄ ∈ Rm−1 as in (6.20) in Lemma 6.2.5, a defining curve in
O(n) is given by t 7→ Qh(t), defined as in (6.22). Note that (cf. (6.23))

d
dtQh(0) = Q ·

 0 −aT 0

a 0 −b
0 bT 0

 ,
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where a = (a1, . . . , an−2)T and b = (b1, . . . , bn−2)T . If we define Wh
t := [Qh(t)],

then from the definition of Qh(t) in (6.22), the intersection with the cap K is given
by Wh

t ∩K = {(first column of Qh(t))}, and the corresponding normal direction is
given by the last column of Qh(t). This implies that again, we have

Υ([Q̃h(t)], ρ) = [Q̃h(t) ·Qρ] .

Furthermore, we have

QTρ ·

 0 −aT 0

a 0 −b
0 bT 0

 ·Qρ =

 0 −caT + sbT 0

ca− sb 0 −sa− cb
0 saT + cbT 0

 ,

where we use the abbreviations

sa := sin(ρ) · a , sb := sin(ρ) · b , ca := cos(ρ) · a , cb := cos(ρ) · b .

This finally yields

D(W,ρ)Υ(ξv, 0)=

Q ·Qρ,


0 −câT + sb̂T 0
0 − sā− cb̄

câ− sb̂ 0 0
0 sāT + cb̄T


 ,

(6.35)
where we use the notation

ā := (a1, . . . , am−1) , â := (am, . . . , an−2) , sā := sin(ρ) · ā , câ := cos(ρ) · â ,

b̄ := (b1, . . . , bm−1) , b̂ := (bm, . . . , bn−2) , cb̄ := cos(ρ) · b̄ , sb̂ := sin(ρ) · b̂ .

Recall that in Corollary 6.2.6 we have identified a basis of TWΣm given by ξvij and
ξhk , where 1 ≤ i ≤ n−m−1, 1 ≤ j ≤ m−1, and 1 ≤ k ≤ n−2. Note that additionally
to the vectors â1, . . . , ân−2 ∈ Rn−m−1 and b̄1, . . . , b̄n−2 ∈ Rm−1, which appear in
the definition of the ξhk , we may evidently define the vectors ā1, . . . , ān−2 ∈ Rm−1

and b̂1, . . . , b̂n−2 ∈ Rn−m−1 so that(
ā1 · · · ān−2

â1 · · · ân−2

)
= In−2 ,

(
b̄1 · · · b̄n−2

b̂1 · · · b̂n−2

)
= Λ . (6.36)

We thus have a basis of TWΣm × TρR given by

{(0, 1)} ∪ {(ξvij , 0) | 1 ≤ i ≤ n−m− 1 , 1 ≤ j ≤ m− 1}
∪ {(ξhk , 0) | 1 ≤ k ≤ n− 2} .

Let us define

P (W, ρ) :=

(
parallelepiped in TWΣm × TρR spanned by the vectors
(0, 1) , (ξvij , 0) , (ξhk , 0)

)
,

DP (W, ρ) :=

(
parallelepiped in TWρ Grn,m spanned by the vectors
D(W,ρ)Υ(0, 1) , D(W,ρ)Υ(ξvij , 0) , D(W,ρ)Υ(ξhk , 0)

)
.
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Then we have

ndet(D(W,ρ)Υ) =
volDP (W, ρ)
volP (W, ρ)

. (6.37)

As for the denominator, the tangent vectors (0, 1) and (ξvij , 0) are orthonormal, and
they are orthogonal to the vectors (ξhk , 0). The vectors (ξhk , 0) span a parallelepiped
of volume det(Wp,Y) (cf. proof of Lemma 6.2.9). This implies that

volP (W, ρ) = det(Wp,Y) .

As for the numerator in (6.37), we get from (6.32), (6.34), and (6.35)

vol DP (W, ρ) =
∣∣∣∣det

(
sā1 + cb̄1 · · · sān−2 + cb̄n−2

câ1 − sb̂1 · · · cân−2 − sb̂n−2

)∣∣∣∣
=
∣∣∣∣det

((
cb̄1 · · · cb̄n−2

−sb̂1 · · · −sb̂n−2

)
+
(
sā1 · · · sān−2

câ1 · · · cân−2

))∣∣∣∣
(6.36)

=
∣∣∣∣det

((
cos(ρ) · Ī 0

0 − sin(ρ) · Î

)
· Λ +

(
sin(ρ) · Ī 0

0 cos(ρ) · Î

))∣∣∣∣ .
This finishes the proof of Proposition 6.3.1. 2

Having computed the Normal Jacobian of the map Υ we have finished “half”
of the proof of Theorem 6.1.1. The following computation shows what remains to
be done. This computation only serves motivational purposes so that we may be
somewhat generous in omitting details.

For small enough α > 0 the volume of the primal tube around Σm is given by
(cf. Corollary 5.1.1)

vol T P(Σm, α) =
∫
Σm

∫ 0

−α
ndet(D(W,ρ)Υ) dρ dW

=
∫
Σm

∫ 0

−α

∣∣∣∣det
((

cos(ρ) · Ī 0
0 − sin(ρ) · Î

)
· Λ +

(
sin(ρ) · Ī 0

0 cos(ρ) · Î

))∣∣∣∣
det(Wp,Y)

dρ dW,

where Λ = Λ(W) as in Proposition 6.3.1. Using the projection map ΠM : Σm →M ,
and using Lemma 6.2.9, we may continue as

=
∫
p∈M

∫
Y∈Gr(TpM,m−1)

∫ 0

−α

∣∣∣det
((

cos(ρ)·Ī 0

0 − sin(ρ)·Î

)
· Λ +

(
sin(ρ)·Ī 0

0 cos(ρ)·Î

))∣∣∣dρ dY dp.
Substituting t := − tan ρ and τ := tanα yields (using sin(arctan(t)) = t/

√
1 + t2,

cos(arctan(t)) = 1/
√

1 + t2, and d
dt arctan(t) = 1/(1 + t2))

=
∫ τ

0

∫
p∈M

∫
Y∈Gr(TpM,m−1)

∣∣∣∣det
((

Ī 0
0 t · Î

)
· Λ +

(
−t · Ī 0

0 Î

))∣∣∣∣
(1 + t2)n/2

dY dp dt .
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Using Fubini’s Theorem, and rescaling the volume element on Gr(TpM,m − 1) so
that we get a probability measure, we see that we need to compute an expectation
of a certain generalized characteristic polynomial. We will call this the twisted
characteristic polynomial (depending on Y ∈ Gr(TpM,m−1)), and we will compute
the expectation w.r.t. Y ∈ Gr(TpM,m− 1) in the following section.

6.4 The expected twisted characteristic polynomial

In this section we will compute the expectation of the twisted characteristic poly-
nomial (cf. Definition 6.4.2 below). For convenience we use in this section the
subsitutions k := n− 2 and ` := m− 1.

For J ∈
(

[k]
i

)
= {i-element subsets of [k]}, [k] = {1, . . . , k}, let us denote by

pmJ(Λ) the Jth principal minor of Λ ∈ Rk×k, i.e.

pmJ(Λ) = det(ΛJ) , ΛJ =


λj1,j1 λj1,j2 ··· λj1,ji
λj2,j1 λj2,j2 ··· λj2,ji

...
...

...
λji,j1 λji,j2 ··· λji,ji

 ,

if J = {j1, . . . , ji}, j1 < j2 < . . . < ji. It is well-known that the usual characteristic
polynomial can be written in terms of the principal minors. We will describe this
in detail in the following lemma, as we will need a corresponding statement for the
twisted characteristic polynomial.

Lemma 6.4.1. The characteristic polynomial of Λ ∈ Rk×k is given by

det(Λ− t · Ik) =
k∑
i=0

(−1)k−i · σi(Λ) · tk−i ,

where σi(Λ) denotes the sum of all principal minors of Λ of size i, i.e.,

σi(Λ) =
∑

J∈([k]
i )

pmJ(Λ) .

Proof. If v1, . . . , vk denote the columns of Λ, we can write the determinant as a
function in the columns via

det(Λ− t · Ik) = det(v1 − t e1, v2 − t e2, . . . , vk − t ek) .

Using the multilinearity of det we get

det(Λ− t · Ik) =
∑
J⊆[k]

det(wJ,1, wJ,2, . . . , wJ,k) , (6.38)

where wJ,i = vi, if i ∈ J , and wJ,i = −t ei, if i 6∈ J . Expanding the determinant in
the columns wJ,i = −t ei, i.e., for i 6∈ J , yields

det(wJ,1, wJ,2, . . . , wJ,k) = (−t)k−|J| · det(ΛJ) = (−t)k−|J| · pmJ(Λ) .

Arranging the summands in (6.38) according to the size of J finally yields

det(Λ− t · Ik) =
k∑
i=0

(−t)k−i ·
∑

J∈([k]
i )

pmJ(Λ) =
k∑
i=0

(−1)k−i · σi(Λ) · tk−i . 2



132 A tube formula for the Grassmann bundle

For diagonalizable Λ the quantity σi(Λ) is the evaluation of the ith elementary
symmetric function in the eigenvalues of Λ. But for clarity we do not generally
assume that Λ is diagonalizable. Note that σi(Λ) = σi(B−1 ·Λ ·B) for invertible B,
as the characteristic polynomial is invariant under conjugation.

Definition 6.4.2. Let Λ ∈ Rk×k and let 0 ≤ ` ≤ k. We define the `th twisted
characteristic polynomial of Λ as

ch`(Λ, t) := det
((

I` 0
0 t Ik−`

)
· Λ +

(
−t I` 0

0 Ik−`

))
.

Furthermore, we define the `th positive twisted characteristic polynomial of Λ as

ch+
` (Λ, t) := det

((
I` 0
0 t Ik−`

)
· Λ +

(
t I` 0
0 Ik−`

))
.

Note that for ` = k we get that chk(Λ, t) is the usual characteristic polynomial,
whereas for ` = 0 we get ch0(Λ, t) = det(Ik + tΛ) =

∑k
i=0 σi(Λ) · ti.

Remark 6.4.3. It should be noted that from a coordinate-free viewpoint there is
an important difference between the usual characteristic polynomial and the twisted
characteristic polynomial of a matrix Λ. The usual characteristic polynomial only
depends on the linear map defined by Λ, whereas the twisted characteristic polyno-
mial depends on the linear map and the subspace R` × {0}. In fact, if one changes
the bases of R`×{0} and of {0}×Rk−`, then the twisted characteristic polynomial
stays invariant, i.e.,

ch`
((

B1 0
0 B2

)−1 · Λ ·
(
B1 0
0 B2

)
, t
)

= ch` (Λ, t) ,

for B1 ∈ Gl`, B2 ∈ Glk−`. The same observation also applies for ch+
` (Λ, t).

The following definition takes account of the above remarked invariance property
of ch`(Λ, t) and ch+

` (Λ, t).

Definition 6.4.4. Let ϕ : Rk → Rk be a linear map, and let Y ∈ Grk,`. We define

chY(ϕ, t) := ch`(Λ, t) , ch+
Y (ϕ, t) := ch+

` (Λ, t) ,

where Λ ∈ Rk×k denotes the representation matrix of ϕ with respect to a basis
b1, . . . , bk of Rk, which satisfies Y = lin{b1, . . . , b`} and Y⊥ = lin{b`+1, . . . , bk}.

For the proof of Theorem 6.1.1 we will be interested in the expected value of
chY(ϕ, t) and ch+

Y (ϕ, t) if Y ∈ Grk,` is chosen uniformly at random. The following
lemma shows that we may as well argue over the coordinate dependent twisted
characteristic polynomial.

Lemma 6.4.5. Let ϕ : Rk → Rk be a linear map and let Λ be the representation
matrix of ϕ w.r.t. the canonical basis of Rk. Then we have

E
Y

[chY(ϕ, t)] = E
Q

[
ch`(QT ΛQ, t)

]
,

E
Y

[
ch+
Y (ϕ, t)

]
= E

Q

[
ch+
` (QT ΛQ, t)

]
,

where Y ∈ Grk,` and Q ∈ O(k) are chosen uniformly at random.



6.4 The expected twisted characteristic polynomial 133

Proof. Let Q ∈ O(k), and let Y := [Q] ∈ Grk,`. Note that Y is the linear subspace
spanned by the first ` columns b1, . . . , b` of Q. The representation matrix of ϕ
w.r.t. the basis b1, . . . , bk of Rk is given by QT ΛQ. Therefore, we have

chY(ϕ, t) = ch`(QT ΛQ, t) , ch+
Y (ϕ, t) = ch+

` (QT ΛQ, t) .

If Q ∈ O(k) is chosen uniformly at random, then also Y = [Q] ∈ Grk,` is chosen
uniformly at random (cf. Section 5.3.2). This finishes the proof. 2

Proposition 6.4.6. Let Λ ∈ Rk×k and ` ≤ k. Then we have for Q ∈ O(k) chosen
uniformly at random

E
Q

[
ch`(QT · Λ ·Q, t)

]
=

k∑
i,j=0

dij · σk−j(Λ) · tk−i , (6.39)

E
Q

[
ch+
` (QT · Λ ·Q, t)

]
=

k∑
i,j=0

|dij | · σk−j(Λ) · tk−i , (6.40)

where the coefficients dij are given for i+ j + ` ≡ 0 mod 2 and

0 ≤ i−j
2 + `

2 ≤ ` , 0 ≤ i+j
2 −

`
2 ≤ k − ` ,

by

dij = (−1)
i−j
2 −

`
2 ·

(
`

i−j
2 + `

2

)
·
( k−`
i+j
2 −

`
2

)(
k
j

) , (6.41)

and dij = 0 else. Additionally, if Λ is positive semidefinite, then for t ≥ 0

|ch`(Λ, t)| ≤ ch+
` (Λ, t) ,

so that in this case

E
Q

[∣∣ ch`(QT · Λ ·Q, t)∣∣] ≤ k∑
i,j=0

|dij | · σk−j(Λ) · tk−i . (6.42)

Remark 6.4.7. The coefficients dij defined in (6.41) coincide with the coeffi-
cients dnmij defined in (6.5), where n := k + 2, m := ` + 1. See Table 6.1 for
the values of dij resp. dnmij for some concrete examples.

The proof of Proposition 6.4.6 is quite simple. The basic idea is to dissect
the polynomials and to consider the expectations of the principal minors. For the
expectation of the principal minors we exploit the invariance of the elementary
symmetric functions. The only remaining difficulty is then the computation of the
coefficients.

For 0 ≤ r ≤ k the rth leading principal minor is the principal minor for J = [r].
Let us denote this by

lpmr(Λ) := pm[r](Λ) = det(Λ[r]) , Λ[r] =

(
a11 ··· a1r

...
...

ar1 ··· arr

)
.

By permuting the rows and columns of Λ we can relate the principal minors with
each other. More precisely, let J = {j1, . . . , jr}, and let π be any permutation of [k]
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such that π(i) = ji for all i = 1, . . . , r. If Mπ denotes the permutation matrix
according to π, i.e., Mπ · ei = eπ(i), then ΛJ = (MT

π · Λ ·Mπ)[r], and therefore

pmJ(Λ) = lpmr(M
T
π · Λ ·Mπ) .

The single principal minors may not be so interesting, as they depend strongly
on the matrix Λ, in contrast to the σr, which only depend on the transformation,
i.e., the conjugacy class of Λ. But we can change this by considering the averaged
principal minors.

Lemma 6.4.8. Let Λ ∈ Rk×k, and let Q ∈ O(k) be chosen uniformly at random.
Then for J ∈

(
[k]
r

)
we have

E
Q

[
pmJ(QT · Λ ·Q)

]
= E

Q

[
lpmr(Q

T · Λ ·Q)
]

=
(
k

r

)−1

σr(Λ) . (6.43)

Proof. For the first equality let J = {j1, . . . , jr}, let π be any permutation of [k]
such that π(i) = ji for all i = 1, . . . , r, and let Mπ denote the permutation matrix
according to π. We have seen that pmJ(Λ) = lpmr(MT

π · Λ ·Mπ). This implies

E
Q

[
pmJ(QT · Λ ·Q)

]
= E

Q

[
lpmr(M

T
π ·QT · Λ ·Q ·Mπ)

]
Q̃:=QMπ= Ẽ

Q

[
lpmr(Q̃

T · Λ · Q̃)
]
,

where we have used the fact that right multiplication by the fixed element Mπ leaves
the uniform distribution on O(k) invariant. This also implies

E
Q

[
lpmr(Q

T · Λ ·Q)
]

=
(
k

r

)−1 ∑
J∈([k]

r )
E
Q

[
pmJ(QT · Λ ·Q)

]

=
(
k

r

)−1

E
Q

[ ∑
J∈([k]

r )
pmJ(QT · Λ ·Q)

]
Lem. 6.4.1=

(
k

r

)−1

E
Q

[
σr(QT · Λ ·Q)

]
=
(
k

r

)−1

σr(Λ) . 2

Before we give the proof of Proposition 6.4.6 we may give a useful reformulation
of Lemma 6.4.8 in the following corollary.

Corollary 6.4.9. Let ϕ : Rk → Rk be a linear map. Furthermore, for Y ∈ Grk,`,
let ϕY denote the linear map

ϕY : Y → Y , ϕY(x) := ΠY ◦ ϕ(x) ,

where ΠY : Rk → Y denotes the orthogonal projection onto Y. Then, for uniformly
random Y ∈ Grk,`, we have

E
Y

[det(ϕY)] =
(
k

`

)−1

σ`(ϕ) .

Proof. The determinant of ϕY is given by the `th leading principal minor of the
representation matrix of ϕ, if the basis b1, . . . , bk of Rk is chosen such that Y =
lin{b1, . . . , b`} and Y⊥ = lin{b`+1, . . . , bk}. The claim now immediately follows
from Lemma 6.4.5 and Lemma 6.4.8. 2
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λ

µ

j i

Figure 6.1: Illustration of the change of summation in (6.46) (k = 8, ` = 5).

Proof of Proposition 6.4.6. Using the multilinearity of the determinant and arguing
as we did for the usual characteristic polynomial in Lemma 6.4.1, we see that

ch`(Λ, t) =
∑
J⊂[k]

(−1)c1(J) · pmJ(Λ) · tc2(J) , (6.44)

for some integers c1(J), c2(J). This consideration also shows that for ch+
` we get

the same expansion except for the sign (−1)c1(J), i.e.,

ch+
` (Λ, t) =

∑
J⊂[k]

pmJ(Λ) · tc2(J) . (6.45)

Averaging the twisted characteristic polynomial yields

E
Q

[
ch`(QT · Λ ·Q, t)

]
=
∑
J⊂[k]

(−1)c1(J) · E
Q

[
pmJ(QT · Λ ·Q)

]
· tc2(J)

(6.43)
=

∑
J⊂[k]

(−1)c1(J)(
k
|J|
) · σ|J|(Λ) · tc2(J)

=
k∑

i,j=0

d̃ij · σk−j(Λ) · tk−i ,

for some constants d̃ij . To compute these constants let us consider the matrices
Λ = s · Ik. For this choice of Λ we have ch`(s · Ik, t) = (s − t)` · (1 + s · t)k−`. As
σk−j(s · Ik) =

(
k
j

)
· sk−j and QT · s · Ik ·Q = s · Ik, we get

(s− t)` · (1 + s · t)k−` = ch`(s · Ik, t) = E
Q

[
ch`(QT · s · Ik ·Q, t)

]
=

k∑
i,j=0

d̃ij ·
(
k

j

)
· sk−j · tk−i .

Let us expand the first term so that we can make a comparison of the coefficients
to get the d̃ij . We have
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(s− t)` · (1 + s·t)k−` =

(∑̀
λ=0

(
`

λ

)
(−1)`−λ · sλ · t`−λ

)
·

(
k−∑̀
µ=0

(
k − `
µ

)
sµ · tµ

)

=
∑̀
λ=0

k−∑̀
µ=0

(−1)`−λ
(
`

λ

)(
k − `
µ

)
· sλ+µ · t`−λ+µ (6.46)

i=k−`+λ−µ
j=k−λ−µ

=
k∑

i,j=0
i+j+`≡0

(mod 2)

(−1)
i−j
2 −

`
2

(
`

i−j
2 + `

2

)(
k − `

k − i+j+`
2

)
· sk−j · tk−i,

where we interpret
(
n
m

)
= 0 if m < 0 or m > n, i.e., the above summation over i, j in

fact only runs over the rectangle determined by the inequalities 0 ≤ i−j
2 + `

2 ≤ ` and
0 ≤ k− i+j+`

2 ≤ k−`. See Figure 6.1 for an illustration of the change of summation.
Note that the reverse substitution is given by λ = i−j+`

2 and µ = k − i+j+`
2 .

Comparing the coefficients of the two expressions of (s− t)` · (1+s · t)k−` reveals
that indeed d̃ij = dij as defined in (6.41). This shows the equality in (6.39).

The equality in (6.40) is shown analogously with the observation

ch+
` (s · Ik, t) = (s+ t)` · (1 + s · t)k−` .

As for the additional claim, note that for positive semidefinite Λ every principal
minor is nonnegative, i.e., pmJ(Λ) ≥ 0 for all J ⊂ [k]. Therefore, if t ≥ 0, we get
from (6.44) and (6.45)

|ch`(Λ, t)|
(6.44)

=
∣∣∣ ∑
J⊂[k]

(−1)c1(J) · pmJ(Λ) · tc2(J)
∣∣∣

≤
∑
J⊂[k]

pmJ(Λ) · tc2(J) (6.45)
= ch+

` (Λ, t) .

This finishes the proof of Proposition 6.4.6. 2

6.5 Proof of Theorem 6.1.1

Before we give the proof of Theorem 6.1.1 we compute the volume of the set Σm(K)
for K ∈ Ksm(Sn−1). Recall that in Section 6.2 we have shown that Σm(K) is a
hypersurface of Grn,m. In particular, it has a well-defined volume given by the
integral of the constant 1-function over Σm(K).

Lemma 6.5.1. For K ∈ Ksm(Sn−1) we have

vol Σm(K) =
vol Grn−2,m−1 ·Om−1 · On−m−1(

n−2
m−1

) · Vn−m−1(K) .

Proof. Consider the projection map ΠM : Σm →M . From Corollary 5.1.1 and from
Lemma 6.2.9, we get

vol Σm =
∫
Σm

1 dW (5.5)
=

∫
p∈M

∫
W∈Π−1

M (p)

ndet(DWΠM )−1 dW dp

Lem. 6.2.9=
∫
p∈M

∫
Y∈Gr(TpM,m−1)

det(Wp,Y) dW dp , (6.47)
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where Wp,Y denotes the linear map

Wp,Y : Y → Y , Wp,Y(ζ) = ΠY ◦Wp(ζ) ,

ΠY denoting the orthogonal projection onto Y. Normalizing the volume element on
Gr(TpM,m− 1) and using Corollary 6.4.9, we get

(6.47) =
∫
p∈M

vol Grn−2,m−1 ·E
Y

[det(Wp,Y)] dp

Cor. 6.4.9=
vol Grn−2,m−1(

n−2
m−1

) ·
∫
p∈M

σm−1(Wp) dp . (6.48)

Note that σ`(Wp) coincides with the values σ`(p), the `th elementary symmetric
function in the principal curvatures of M at p. So with Proposition 4.4.4 we may
conclude

(6.48) =
vol Grn−2,m−1 ·Om−1 · On−m−1(

n−2
m−1

) · Vn−m−1(K) . 2

We will now give the proof of Theorem 6.1.1. Recall that the intrinsic volumes
Vj(K) are continuous in K (cf. Proposition 4.4.1), and the set of smooth caps
Ksm(Sn−1) lies dense in Kc(Sn−1) (cf. Proposition 4.1.10); in particular, it lies
dense in Kr(Sn−1). Furthermore, in Lemma 6.1.7 we have seen that the map

K(Sn−1)→ R , K 7→ rvol T P(Σm(K), α)

is (uniformly) continuous. Therefore, in order to show the inequality (6.3) we may
assume w.l.o.g. that K ∈ Ksm(Sn−1). We will assume this for the rest of this section.

Recall from Section 6.2 that for K ∈ Ksm(Sn−1), the set Σm is an orientable
hypersurface of Grn,m, where the chosen unit normal field of Σm, denoted by νΣ

(cf. (6.28)) points into the component FD
G (cf. Remark 6.2.8). This implies that the

image Υ(Σm× [−α, 0]) (cf. (6.31)) covers the primal tube T P(Σm, α). Applying the
coarea formula in Corollary 5.1.1, inequality (5.4), to the map Υ yields

vol T P(Σm, α) ≤
∫
Σm

∫ 0

−α
ndet(D(W,ρ)Υ) dρ dW .

Using the notation of Proposition 6.3.1 (note that the matrix Λ depends on the
subspace Y =W ∩ p⊥ ∈ Gr(TpM,m− 1)) we may continue as

=
∫
Σm

∫ 0

−α

∣∣∣∣det
((

cos(ρ) · Ī 0
0 − sin(ρ) · Î

)
· Λ +

(
sin(ρ) · Ī 0

0 cos(ρ) · Î

))∣∣∣∣
|det(Λ̄)|

dρ dW,

and with the help of the projection map ΠM : Σm → M and Lemma 6.2.9 we may
continue

=
∫
p∈M

∫
Gr(TpM,m−1)

∫ 0

−α

∣∣∣det
((

cos(ρ)·Ī 0

0 − sin(ρ)·Î

)
· Λ +

(
sin(ρ)·Ī 0

0 cos(ρ)·Î

))∣∣∣ dρ dY dp.
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Subsituting t := − tan ρ and τ := tanα yields (using sin(arctan(t)) = t/
√

1 + t2,
cos(arctan(t)) = 1/

√
1 + t2, and d

dt arctan(t) = 1/(1 + t2))

=
∫
p∈M

∫
Gr(TpM,m−1)

∫ τ

0

(1 + t2)−n/2 · |chY(Wp, t)| dt dY dp .

Rescaling the volume element on Gr(TpM,m− 1) finally yields

=
∫
p∈M

∫ τ

0

(1 + t2)−n/2 · vol Grn−2,m−1 ·E
Y

[
|chY(Wp, t)|

]
dt dp ,

where the expectation is w.r.t. Y ∈ Gr(TpM,m− 1) chosen uniformly at random.
From Lemma 6.4.5 and Proposition 6.4.6 we get

E
Y

[
|chY(Wp, t)|

]
≤

n−2∑
i,j=0

|dnmij | · σn−2−j(p) · tn−2−i . (6.49)

So we may conclude

vol T P(Σm, α) ≤
∫
p∈M

∫ τ

0

vol Grn−2,m−1

(1 + t2)n/2
·
n−2∑
i,j=0

∣∣dnmij ∣∣ · σn−2−j(p) · tn−2−i dt dp

= vol Grn−2,m−1 ·
n−2∑
i,j=0

∣∣dnmij ∣∣ · ∫ τ

0

tn−2−i

(1 + t2)n/2
dt ·

∫
p∈M

σn−2−j(p) dp .

Reversing the substitution t = tan ρ and τ = tanα yields∫ τ

0

tn−2−i

(1 + t2)n/2
dt =

∫ α

0

cos(ρ)i · sin(ρ)n−2−i dρ = In,i(α) .

In Proposition 4.4.4 we have seen that∫
p∈M

σn−2−j(p) dp = Oj · On−2−j · Vj(K) .

From (5.23) in Section 5.3.2 we get

vol Grn−2,m−1

vol Grn,m
=
∏n−3
i=n−m−1Oi∏m−2
i=0 Oi

·
∏m−1
i=0 Oi∏n−1
i=n−mOi

=
Om−1 · On−m−1

On−2 · On−1
. (6.50)

So finally, using the identities in Proposition 4.1.20, we compute

rvol T P(Σm, α) ≤ vol Grn−2,m−1

vol Grn,m
·
n−2∑
i,j=0

∣∣dnmij ∣∣ · ∫ τ

0

tn−2−i

(1 + t2)n/2
dt ·

∫
p∈M

σn−2−j(p) dp

=
Om−1 · On−m−1

On−2 · On−1
·
n−2∑
i,j=0

∣∣dnmij ∣∣ · In,i(α) · Oj · On−2−j · Vj(K)

=
2m(n−m)

n
· ωm · ωn−m

ωn
·
n−2∑
j=0

Vj(K) · Oj · On−2−j

2 · On−2
·
n−2∑
i=0

∣∣dnmij ∣∣ · In,i(α)

(4.22)
=

2m(n−m)
n

·
(
n/2
m/2

)
·
n−2∑
j=0

Vj(K) ·
[
n− 2
j

]
·
n−2∑
i=0

|dnmij | · In,i(α) .
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This finishes the proof of the inequality (6.3) in Theorem 6.1.1.
As for the exact formula in the case 0 ≤ α ≤ α0, let us first describe the

most natural approach, although we will go an alternative way, which seems more
comfortable in our situation. Recapitulating the above estimate of rvol T P(Σm, α),
we notice that there are two steps where we possibly lose exactness. The first step
lies in the fact that the map Υ might not be injective on Σm × [−α, 0]. This is
harmless, as we will show that Υ is indeed injective on Σm × (−α0, 0]. The second
critical step is the estimate in (6.49). If we knew that we may drop the absolute
value, i.e., if we had

chY(Wp, t) ≥ 0 , for t ≤ tan(α0) , (6.51)

then we would get

E
Y

[
|chY(Wp, t)|

]
= E
Y

[
chY(Wp, t)

]
=

n−2∑
i,j=0

dnmij · σn−2−j(p) · tn−2−i .

So this would give the equality statement in Theorem 6.1.1. The problem in this
approach is to show (6.51). More precisely, it is easily seen that chY(Wp, t) ≥ 0 for
all t ≤ ε, where ε > 0 is some constant only depending on K. It is not so easy to
show that one may take ε ≥ tan(α0).

Therefore, we show the equality statement by some alternative method. First
of all, we will show that Υ is injective on Σm × (−α0, 0]. Let Wρ := Υ(W, ρ) with
ρ ∈ (−α0, 0). If q ∈ Sn−1 denotes the point, which is obtained by rotating p by an
angle of ρ in normal direction away fram K, then we have Wρ = W(→ q) (cf. the
comments after (6.31); and cf. Definition 5.5.1). We get that Wρ ∩K = ∅, and the
(spherical) distance between Sρ := Wρ ∩ Sn−1 and K is given by d(Wρ,Σm) = ρ
(cf. Proposition 5.5.2). By Proposition 3.1.19 the pair (p, q) is the unique pair in
K × Sρ, which has spherical distance ρ. Therefore, by (5.37) in Corollary 5.5.3, W
is the unique element in Σm, which minimizes the distance to Wρ. This shows that
Υ is injective on Σm × (−α0, 0]. It also shows that{

W̃ ∈ T P(Σm, α) | d(W̃,Σm(K)) = ρ
}

= Σm(Kρ) , (6.52)

where Kρ := T (K, ρ) ∈ Ksm(Sn−1) (by definition of α0).
Considering the distance function

dist : T P(Σm, α)→ R , dist(W) := d(W,Σm) ,

we have the following commutative diagram

Σm × [−α, 0] T P(Σm, α)

R

Υ

|Π2|
dist ,

where |Π2|(W, ρ) := |ρ|. The Normal Jacobian of the map dist is easily seen to be 1
(cf. Example 5.4.6). Moreover, the fibers of dist are given by

dist−1(ρ)
(6.52)

= Σm(Kρ) ,
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where Kρ = T (K, ρ) ∈ Ksm(Sn−1). Using the coarea formula in Corollary 5.1.1, we
get

vol T P(Σm, α) =
∫ α

0

vol(Σm(Kρ)) dρ

Lem. 6.5.1=
∫ α

0

vol Grn−2,m−1 ·Om−1 · On−m−1(
n−2
m−1

) · Vn−m−1(Kρ) dρ .

Note that

vol Grn−2,m−1 ·Om−1 · On−m−1

vol Grn,m ·
(
n−2
m−1

) (6.50)
=

O2
m−1 · O2

n−m−1(
n−2
m−1

)
· On−2 · On−1

.

In Proposition A.2.1 in Section A.2 in the appendix we will show that

Vn−m−1(Kρ) =
(

(n− 2)/2
(m− 1)/2

)
·
n−2∑
i,j=0

dnmij ·
[
n− 2
j

]
· cos(ρ)i · sin(ρ)n−2−i · Vj(K) .

Using this, we get

rvol T P(Σm, α) =
vol Grn−2,m−1 ·Om−1 · On−m−1

vol Grn,m ·
(
n−2
m−1

) ·
∫ α

0

Vn−m−1(Kρ) dρ

=

(
(n−2)/2
(m−1)/2

)
· O2

m−1 · O2
n−m−1(

n−2
m−1

)
· On−2 · On−1

·
n−2∑
i,j=0

dnmij ·
[
n− 2
j

]
·
∫ α

0

cos(ρ)i · sin(ρ)n−2−i dρ · Vj(K) .

With Proposition 4.1.20 we finally compute(
(n−2)/2
(m−1)/2

)
· O2

m−1 · O2
n−m−1(

n−2
m−1

)
· On−2 · On−1

(4.21)
=

O2
m−1 · O2

n−m−1[
n−2
m−1

]
· On−2 · On−1

(4.22)
=

2 · Om−1 · On−m−1

On−1

=
2m(n−m)

n
· ωm · ωn−m

ωn

(4.22)
=

2m(n−m)
n

·
(
n/2
m/2

)
,

which finishes the proof. 2



Chapter 7

Estimations

In this chapter we will perform several analyses of the Grassmann condition number.
These will be average analyses, but we will also give a first attempt of a smoothed
analysis.

We will start with a first-order average analysis, which means that instead of
using the whole tube formula for tail estimates we will only use the leading term.
This implies of course that the results have to be taken with a grain of salt due to this
inaccuracy. But these first-order results are still interesting as they might reveal
the actual behavior of the condition, which is harder to be demonstrated in the
more complicated full tube formula. In particular, we will not only be able to give
estimates which are independent of the cone involved, but also improvements for a
large class of cone families, which suggest a general independence of the expected
condition from the dimension of the cone if some weak conditions are satisfied.

Second, we will give estimates of the full tube formula, carrying the most impor-
tant 1st order estimates over to the full setting. The results will be slightly worse
than suggested by the results of the first-order approach.

Third, we will explain how one can obtain smoothed analyses of the Grassmann
condition. We will perform a first-order smoothed analysis to illustrate this, but
this will merely be a proof of concept as the results are not yet satisfactory.

Table 7.1 summarizes the results of the average analyses, i.e., the tail estimates
of the Grassmann condition of a matrix A ∈ Rn×m, m < n, assuming that A be a
normal distributed random matrix, i.e., the entries of A are i.i.d. standard normal.
Here, the abbreviations LP, SOCP-1, SOCP stand for the following choices of the
reference cone C:

(LP): C = Rn+ = {x ∈ Rn | xi ≥ 0 ∀i = 1, . . . , n}

(SOCP-1): C = Ln = {x ∈ Rn | x2
n ≥ x2

1 + . . .+ x2
n−1}

(SOCP): C = Ln1 × . . .× Lnk , n1 + . . .+ nk = n .

Table 7.2 shows the corresponding estimates of the expectation of the logarithm of
the Grassmann condition.

The following proposition provides the link between the average analysis of the
Grassmann condition and the geometric volume computation of Chapter 6. Note
that CG(A) ≥ 1 (cf. Remark 2.3.5).

Proposition 7.0.2. Let C ⊂ Rn be a regular cone. If A ∈ Rn×m, m < n, is a
normal distributed random matrix, then for t ≥ 1 and α := arcsin(1/t)

Prob[CG(A) > t] = rvol T (Σm(C), α) .

141
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1st order full

–any cone– 2 ·
√
m(n−m) · 1

t 6 ·
√
m(n−m) · 1

t , if t > n
3
2

LP 2.3 ·
√
m · 1

t 29 ·
√
m · 1

t , if t > m ≥ 8

SOCP-1 1.6 ·
√
m · 1

t 20 ·
√
m · 1

t , if t > m ≥ 8

SOCP 4 ·m · 1
t —

–any self-dual cone–
(assuming Conjecture 4.4.17)

4 ·m · 1
t —

Table 7.1: Estimates of the tail Prob[CG(A) > t].

E [ln CG(A)] < . . .

–any cone– 1.5 · ln(n) + 1.8, if n ≥ 4

LP ln(m) + 3.4, if m ≥ 8

SOCP-1 ln(m) + 3, if m ≥ 8

Table 7.2: Estimates of the expectation of ln CG(A).

Proof. IfW := im(AT ), then with probability 1, we haveW ∈ Grn,m. Moreover, the
induced distribution on Grn,m is the uniform probability distribution (cf. Proposi-
tion 5.3.5). Furthermore, by Proposition 2.3.8 we have CG(A) = 1/ sin d∗(W,Σm(C)),
where d∗ may denote either the Hausdorff- or the geodesic distance on Grn,m. There-
fore, we have

CG(A) > t ⇐⇒ W ∈ T (Σm(C), α) ,

with α := arcsin(1/t). 2

The following lemma provides an easy transfer of tail estimates to estimates of
the expectation.

Lemma 7.0.3. Let X be a random variable taking values ≥ 1, and for t ≥ 1 let

Prob[X > t] < c ·md1 · (n−m)d2 · 1
t
.

Then the expectation of the logarithm of X is bounded from above by

E [lnX] < d1 · ln(m) + d2 · ln(n−m) + ln(c) + 1 ,

for some constants c, d1, d2 > 0.
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Proof. This is shown by the following computation (put r := ln c)

E [lnX] =
∫ ∞

0

Prob[ln(X) > s] ds

< ln(md1 · (n−m)d2) + r +
∫ ∞

ln(md1 ·(n−m)d2 )+r

c ·md1 · (n−m)d2 · exp(−s) ds

= d1 · ln(m) + d2 · ln(n−m) + r + c · exp(−r)
= d1 · ln(m) + d2 · ln(n−m) + ln(c) + 1 . 2

7.1 Average analysis – 1st order

In this section we will give first-order average analyses of the Grassmann condition,
i.e., we will approximate the volume of the tube around Σm by the volume of the
(lower-dimensional) Sigma set. We use the following asymptotic notation for t→∞

Prob[CG(A) > t] . f(n,m) · 1
t

:⇐⇒ Prob[CG(A) > t] ≤ f(n,m) · 1
t

+
g(n,m)
t2

for all t > 0 ,

for some function g(n,m).
Note that by Proposition 7.0.2 and by Corollary 6.1.5 we have, using K :=

C ∩ Sn−1,

Prob[CG(A) > t] . 8 ·
Γ(m+1

2 )
Γ(m2 )

·
Γ(n−m+1

2 )
Γ(n−m2 )

· Vn−m−1(K) · 1
t

(7.1)

< 4 ·
√
m(n−m) · Vn−m−1(K) · 1

t
,

as arcsin(1/t) ∼ 1/t.

Theorem 7.1.1. Let A ∈ Rn×m, m < n, be a normal distributed random matrix,
i.e., the entries of A are i.i.d. standard normal.

1. Let C ⊂ Rn be any regular cone. Then

Prob[CG(A) > t] . 2 ·
√
m(n−m) · 1

t
. (7.2)

2. (LP) Let C = Rn+ be the positive orthant. Then

Prob[CG(A) > t] . 2.3 ·
√
m · 1

t
. (7.3)

3. (SOCP-1) Let C = Ln be the nth Lorentz cone. Then

Prob[CG(A) > t] . 1.6 ·
√
m · 1

t
. (7.4)

4. (SOCP) Let C = Ln1 × . . .× Lnk be any second-order cone. Then

Prob[CG(A) > t] . 4 ·m · 1
t
. (7.5)
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5. Let C ⊂ Rn be any self-dual cone. If Conjecture 4.4.17 is true, then

Prob[CG(A) > t] . 4 ·m · 1
t
. (7.6)

Occasionally, we will use estimates or computations that are easily verified by
hand or with the help of a computer algebra system. If we do this during a longer
computation, then we will mark this with the symbol at the corresponding step.

In the remainder of this section we will give the proof of Theorem 7.1.1. We will
show the tail estimates (7.2)–(7.6) one at a time.

Proof of Theorem 7.1.1(1). If C ⊂ Rn is a regular cone, then K := C ∩ Sn−1 is
a cap, i.e., K ∈ Kc(Sn−1). In particular, Vj(K) ≤ 1

2 (cf. Proposition 4.4.10).
From (7.1) we thus get

Prob[CG(A) > t] . 4 ·
√
m(n−m) · Vn−m−1(K) · 1

t
≤ 2 ·

√
m(n−m) · 1

t
.

This proves the tail estimate (7.2). 2(1)

Proof of Theorem 7.1.1(2). Let C = Rn+ be the positive orthant. The intrinsic
volumes of K = C ∩ Sn−1 are given by (cf. Remark 4.4.15)

Vj(K) =

(
n
j+1

)
2n

, (7.7)

for −1 ≤ j ≤ n− 1. From (7.1) we thus get

Prob[CG(A) > t] . 4 ·
√
m(n−m) ·

(
n
m

)
2n︸ ︷︷ ︸

=:fm(n)

·1
t
.

Using Proposition 4.1.22 and Proposition 4.1.23 it is easily seen that for fixed m
the sequence fm(m+ 1), fm(m+ 2), fm(m+ 3), . . . is log-concave. In particular, it
has at most one maximum. This maximum lies at n = 2m+ 1, as

fm(2m)
fm(2m+ 1)

= 2 ·
√
m√

m+ 1
· m+ 1

2m+ 1
=

√
m · (m+ 1)
m+(m+1)

2

< 1 ,

and

fm(2m+ 2)
fm(2m+ 1)

=
1
2
·
√
m+ 2√
m+ 1

· 2m+ 2
m+ 2

=
m+ 1√

m+ 1 ·
√
m+ 2

< 1 .

Therefore, using √
m(m+ 1) ·

(
2m+1
m

)
22m+1

<

√
m√
π
,

we get

Prob[CG(A) > t] . 4 ·
√
m(m+ 1) ·

(
2m+1
m

)
22m+1

· 1
t
< 4 ·

√
m√
π
· 1
t

< 2.3 ·
√
m · 1

t
.

This proves the tail estimate (7.3). 2(2)
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Remark 7.1.2. Note that if the ratio m
n =: c is fixed, then by (7.1) and (7.7)

Prob[CG(A) > t] . 4 ·
√
c(1− c) · n ·

(
n
c·n
)

2n
· 1
t
,

which goes exponentially to 0 if c 6= 1
2 (cf. Section A.1).

Proof of Theorem 7.1.1(3). Let C = Ln be the nth Lorentz cone. Recall that the
intrinsic volumes of K = C∩Sn−1 are given for 0 ≤ j ≤ n−2 by (cf. Example 4.4.8)

Vj(K) =

(
(n−2)/2
j/2

)
2n/2

. (7.8)

From (7.1) we thus get

Prob[CG(A) > t] . 8 ·
Γ(m+1

2 )
Γ(m2 )

·
Γ(n−m+1

2 )
Γ(n−m2 )

·

(
(n−2)/2
(m−1)/2

)
2n/2

· 1
t

(4.18)
= 4 · m(n−m)

n
·

(
n/2
m/2

)
2n/2︸ ︷︷ ︸

=:gm(n)

·1
t
. (7.9)

Is is easily seen, that for fixed m the sequence (n−mn | n = m+ 1,m+ 2, . . .) is log-
concave. Moreover, using Proposition 4.1.22 and Proposition 4.1.23 it is easily seen
that for fixed m the sequence gm(m+ 1), gm(m+ 2), gm(m+ 3), . . . is log-concave.
In particular, it has at most one maximum. This maximum lies at n = 2m+ 1, as

gm(2m)
gm(2m+ 1)

=
4 · m

2

2m ·
( m
m/2)
2m

4 · m(m+1)
2m+1 ·

(m+1/2
m/2 )

2m+1/2

=
1√
2
· 2m+ 1
m+ 1

·

(
m
m/2

)(
m+1/2
m/2

) < 1 ,

and

gm(2m+ 2)
gm(2m+ 1)

=
4 · m(m+2)

2m+2 ·
(m+1
m/2)

2m+1

4 · m(m+1)
2m+1 ·

(m+1/2
m/2 )

2m+1/2

=
1√
2
· m+ 2
m+ 1

· 2m+ 1
2m+ 2

·

(
m+1
m/2

)(
m+1/2
m/2

) < 1 .

Therefore, using

m+ 1
2m+ 1

·

(
m+1/2
m/2

)
2m

<
1√
π
· 1√

m
,

we get

Prob[CG(A) > t] . 4 · m(m+ 1)
2m+ 1

·

(
m+1/2
m/2

)
2m+1/2

· 1
t
<

4√
2π
·
√
m · 1

t

< 1.6 ·
√
m · 1

t
.

This proves the tail estimate (7.4). 2(3)

Remark 7.1.3. Note as in Remark 7.1.2 that if the ratio m
n =: c is fixed then

by (7.1) and (7.8)

Prob[CG(A) > t] . 4 · c(1− c) ·

(
n/2
c·n/2

)
2c·n/2

· 1
t
.

which goes exponentially to 0 if c 6= 1
2 (cf. Section A.1).
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For the tail estimates (7.5) and (7.6) we need the following lemma, which pro-
vides upper bounds for the intrinsic volumes of self-dual caps, assuming that the
sequence of intrinsic volumes is unimodal.

Lemma 7.1.4. If K ∈ Kc(Sn−1) is a self-dual cap, and if the sequence of intrinsic
volumes V0(K), V1(K), . . . , Vn−2(K) is unimodal, then

Vi(K) ≤

{
1

n−1−2i for 0 ≤ i ≤ n−2
2

1
2i−n+3 for n−2

2 ≤ i ≤ n− 2 .
(7.10)

Proof. Recall that by self-duality we have Vi(K) = Vn−2−i(K), so that the uni-
modality of the sequence of intrinsic volumes implies that Vi−1(K) ≤ Vi(K), if
i ≤ n−2

2 , and Vi(K) ≥ Vi+1(K), if i ≥ n−2
2 . Also note that as

∑n−1
i=−1 Vi(K) = 1,

we have Vi1(K) + . . .+ Vik(K) ≤ 1 for all −1 ≤ i1 < i2 < . . . < ik ≤ n− 1. Let us
first treat the case where n is even. We have

1 ≥ Vn−2
2

(K) ,

1 ≥ Vn−2
2 −1(K) + Vn−2

2
(K) + Vn−2

2 +1(K) ≥ 3 · Vn−2
2 −1(K)

...
1 ≥ (1 + 2j) · Vn−2

2 −j
(K) ,

or equivalently Vn−2
2 −j

(K) = Vn−2
2 +j(K) ≤ 1

1+2j . Substituting i = n−2
2 − j or

i = n−2
2 + j, respectively, yields (7.10) for n even.

For n odd we have

1 ≥ Vn−2
2 −

1
2
(K) + Vn−2

2 + 1
2
(K) = 2 · Vn−3

2
(K) ,

1 ≥ Vn−2
2 −

3
2
(K) + Vn−2

2 −
1
2
(K) + Vn−2

2 + 1
2
(K) + Vn−2

2 + 3
2
(K) ≥ 4 · Vn−3

2 −1(K)

...
1 ≥ (2 + 2j) · Vn−3

2 −j
(K) ,

or equivalently Vn−3
2 −j

(K) = Vn−1
2 +j(K) ≤ 1

2+2j . Substituting i = n−3
2 − j or

i = n−1
2 + j, respectively, yields (7.10) for n odd. This finishes the proof. 2

Proof of Theorem 7.1.1(4),(5). Let C ⊂ Rn be a self-dual cone such that the se-
quence of intrinsic volumes V0(K), V1(K), . . . , Vn−2(K), where K = C ∩ Sn−1, is
unimodal. This is the case for C = Ln1 × . . .×Lnk a second-order cone (cf. Corol-
lary 4.4.14), or for any self-dual cone, if Conjecture 4.4.17 is true. From (7.1) and
Lemma 7.1.4 we thus get

Prob[CG(A) > t] . 4 ·
√
m(n−m) ·

{
1

2m−n+1 if m ≥ n
2

1
n−2m+1 if m ≤ n

2

}
︸ ︷︷ ︸

=:hm(n)

·1
t

For fixed m the sequence hm(m + 1), hm(m + 2), hm(m + 3), . . . has its maximum
in n = 2m, as for n ≤ 2m

hm(n− 1)
hm(n)

[n≤2m]
=

√
n−m− 1
n−m

· 2m− n+ 1
2m− n+ 2

< 1 ,
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and for n ≥ 2m

hm(n+ 1)
hm(n)

[n≥2m]
=

√
n+ 1−m
n−m

· n− 2m+ 1
n− 2m+ 2

=

√
(n−m) · (n− 2m+ 1)2 + (n− 2m+ 1)2

(n−m) · (n− 2m+ 1)2 + (n−m) · 2(n− 2m+ 1) + (n−m)

<

√
(n−m) · (n− 2m+ 1)2 + (n−m)(n− 2m+ 1)

(n−m) · (n− 2m+ 1)2 + (n−m) · 2(n− 2m+ 1)

≤ 1 .

Therefore, we may conclude

Prob[CG(A) > t] . 4 ·m · 1
t
.

This proves the tail estimates (7.5) and (7.6) and therefore finishes the proof.
2(4),(5)

7.2 Average analysis – full

In this section we will estimate the complete tube formula thus getting a full average
analysis of the Grassmann condition.

Theorem 7.2.1. Let A ∈ Rn×m, m < n, be a normal distributed random matrix,
i.e., the entries of A are i.i.d. standard normal.

1. Let C ⊂ Rn be any regular cone. Then

Prob[CG(A) > t] < 6 ·
√
m(n−m) · 1

t
, if t > n

3
2 , (7.11)

E [ln CG(A)] < 1.5 · ln(n) + 1.8 , if n ≥ 4 .

2. (LP) Let C = Rn+ be the positive orthant, and let t > m ≥ 8. Then

Prob[CG(A) > t] < 29 ·
√
m · 1

t
, (7.12)

E [ln CG(A)] < ln(m) + 3.4 .

3. (SOCP-1) Let C = Ln be the nth Lorentz cone, and let t > m ≥ 8. Then

Prob[CG(A) > t] < 20 ·
√
m · 1

t
, (7.13)

E [ln CG(A)] < ln(m) + 3 .

The following lemma collects some estimates that we will use in the proof of
Theorem 7.2.1.

Lemma 7.2.2. Let i, k, `,m, n ∈ N with n ≥ 2 and 1 ≤ m ≤ n− 1.

1. We have
Γ(m+`+1

2 )
Γ(m2 )

≤
√
m

2
·
(
m+ `

2

) `
2

. (7.14)
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2. For 0 ≤ k ≤ m− 1 and 0 ≤ i− k ≤ n−m− 1 we have(
m+ i− 2k

n−m− i+ 2k

) i−2k
2

< n
i
2 . (7.15)

3. For 0 ≤ i ≤ n− 2 we have

n−2∑
k=0

(
m− 1
k

)
·
(
n−m− 1
i− k

)
=
(
n− 2
i

)
. (7.16)

4. For 0 ≤ α ≤ π
2 , t := sin(α)−1, and n ≥ 3, we have

n−2∑
i=0

(
n− 2
i

)
· n i

2 · In,n−2−i(α) <
3
t
, if t > n

3
2 , (7.17)

n−2∑
i=0

(
n− 2
i

)
· In,n−2−i(α) < exp

( n
m

)
· 1
t
, if t > m . (7.18)

5. For x ≥ 0 and 0 ≤ y ≤ x let the binomial coefficient be extended to
(
x
y

)
=

Γ(x+1)
Γ(y+1)·Γ(x−y+1) . Then (

x

y

)
≤
(
x

x/2

)
<

√
2

π · x
· 2x . (7.19)

Proof. (1) For the first estimate we distinguish the cases ` odd and ` even. Using
Γ(x+ 1) = x · Γ(x), we get for ` odd

Γ(m+`+1
2 )

Γ(m2 )
=

`−1
2∏

a=0

(m
2

+ a
)
≤ m

2
·
(
m+ `− 1

2

) `−1
2

≤
√
m

2
·
(
m+ `

2

) `
2

.

Using additionally Γ(x+ 1
2 ) <

√
x · Γ(x) (cf. Section 4.1.4), we get for ` even

Γ(m+`+1
2 )

Γ(m2 )
=

`
2−1∏
a=0

(
m+ 1

2
+ a

)
·

Γ(m+1
2 )

Γ(m2 )
<

(
m+ `

2

) `
2

·
√
m

2
.

(2) As for the second estimate, we distinguish the cases i ≥ 2k and i ≤ 2k. From
0 ≤ k ≤ m− 1 and 0 ≤ i− k ≤ n−m− 1 we get

1 ≤ m− k + i− k ≤ n− 1 ,
1 ≤ n− (m− k + i− k) ≤ n− 1 .

For i ≥ 2k we thus get(
m+ i− 2k

n−m− i+ 2k

) i−2k
2

≤ (n− 1)
i−2k

2 < n
i
2 ,

and for i ≤ 2k(
m+ i− 2k

n−m− i+ 2k

) i−2k
2

=
(
n−m+ 2k − i
m− 2k + i

) 2k−i
2

≤ (n− 1)
2k−i

2 < n
i
2 .
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(3) The third point is the so-called Vandermonde’s identity, which follows from
the following polynomial identity

n−2∑
i=0

(
n− 2
i

)
·Xi = (1 +X)n−2 = (1 +X)m−1 · (1 +X)n−m−1

=

(
n−2∑
k=0

(
m− 1
k

)
·Xk

)
·

(
n−2∑
`=0

(
n−m− 1

`

)
·X`

)

=
n−2∑
i=0

(
n−2∑
k=0

(
m− 1
k

)
·
(
n−m− 1
i− k

))
·Xi .

(4) The I-functions have been estimated in [17, Lemma 2.2] in the following way.
Let ε := sin(α) = 1

t . For i < n− 2

In,n−2−i(α) =
∫ α

0

cos(ρ)n−2−i · sin(ρ)i dρ ≤ εi+1

i+ 1
, (7.20)

and for i = n− 2

In,0(α) =
∫ α

0

sin(ρ)n−2 dρ ≤ On−1 · εn−1

2On−2
=
√
π

2
·

Γ(n−1
2 )

Γ(n2 )
· εn−1

<

√
π

2(n− 2)
· εn−1 .

With these estimates we get

n−2∑
i=0

(
n− 2
i

)
· n i

2 · In,n−2−i(α)

≤
n−2∑
i=0

(
n− 2
i

)
· n i

2 · ε
i+1

i+ 1
+
(√

π

2(n− 2)
− 1
n− 1

)
· εn−1 · n

n−2
2

< ε ·

(
n−2∑
i=0

(
n− 2
i

)
· n i

2 · εi +
1.4√
n
· εn−2 · n

n−2
2

)

= ε ·

((
1 +
√
n · ε

)n−2 + 1.4 · εn−2 · n
n−3

2

)
,

and for ε < n−
3
2 we may continue

< ε ·

((
1 +

1
n

)n−2

︸ ︷︷ ︸
<exp(1)

+1.4 · n 3
2−n

)

< 3 · ε .

Similarly we compute the last estimate

n−2∑
i=0

(
n− 2
i

)
· In,n−2−i(α)

(as above)
< ε ·

(
(1 + ε)n−2 +

1.4√
n
· εn−2

)
, (7.21)
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and for ε < 1
m we finally get

(7.21) < ε ·

((
1 +

1
m

)n−2

+
1.4√

n ·mn−2

)

< ε · exp
( n
m

)
.

(5) The extended binomial coefficient is obviously symmetric around x/2, i.e.,

x

x/2− c
=

x

x/2 + c
,

for 0 ≤ c ≤ x
2 . Furthermore, for fixed x ≥ 0 the functions Γ(y+ 1),Γ(x− y+ 1) are

log-convex (cf. Section 4.1.4). It follows that their product is also log-convex, and
the inverse of their product is log-concave. Therefore, the function

[0, x]→ R , y 7→ Γ(x+ 1)
Γ(y + 1) · Γ(x− y + 1)

=
(
x

y

)
is log-concave. The symmetry around x/2 thus implies that also its maximum has
to lie in x/2. So we have (

x

y

)
≤
(
x

x/2

)
=

Γ(x+ 1)
Γ(x+2

2 )2
.

By the duplication formula for the Γ-function (cf. (4.16)), we have

Γ(x+ 1)
Γ(x+2

2 )2
=

2x · Γ(x+1
2 )

√
π · Γ(x+2

2 )
<

√
2

π · x
· 2x . 2

Proof of Theorem 7.2.1. As in the proof of Theorem 7.1.1 we begin with the deriva-
tion of the estimates of the expectation of ln(CG(A)) from the tail estimates. For
the general case we have

E [ln(CG(A))] =
∫ ∞

0

Prob[ln(CG(A)) > s] ds

< 1.5 · ln(n) + r +
∫ ∞

ln(n3/2)+r

6 ·
√
m(n−m) · exp(−s) ds

= 1.5 · ln(n) + r + 6 ·
√
m(n−m)
n3/2︸ ︷︷ ︸
≤2−3/2

· exp(−r)

< 1.5 · ln(n) + 1.8 ,

if we choose r := ln
(

3√
2

)
. Analogously, we get for the remaining cases LP and

SOCP-1 with c = 29 or c = 20, respectively,

E [ln(CG(A))] < ln(m) + r +
∫ ∞

ln(m)+r

c ·
√
m · exp(−s) ds = ln(m) + ln

(
c√
m

)
+ 1

< ln(m) + ln
(

c√
8

)
+ 1 ,

where r := ln
(

c√
m

)
, and where the last inequality holds for m ≥ 8.
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It remains to show the tail estimates in (7.11)–(7.13). Recall from Proposi-
tion 7.0.2 and Corollary 6.1.4 that

Prob[CG(A) > t] = rvol T (Σm(C), α)

≤ 4m(n−m)
n

(
n/2
m/2

)
·
n−2∑
j=0

Vj(K) ·
[
n− 2
j

]
·
n−2∑
i=0

|dnmij | · In,i(α) , (7.22)

where α = arcsin
(

1
t

)
, and

|dnmij | =

( m−1
i−j
2 +m−1

2

)
·
( n−m−1
i+j
2 −

m−1
2

)(
n−2
j

) , if i+ j +m ≡ 1 (mod 2) ,

and |dnmij | = 0 else. Using the decomposition
(
n−2
j

)
=
[
n−2
j

]
·
(

(n−2)/2
j/2

)
(cf. Propo-

sition 4.1.20), we get

4m(n−m)
n

·

(
n/2
m/2

)
·
[
n−2
j

](
n−2
j

) =
4m(n−m)

n
·

(
n/2
m/2

)(
(n−2)/2
j/2

)
(4.18)

=
4m(n−m)

n
·

Γ(n+2
2 )

Γ(m+2
2 ) · Γ(n−m+2

2 )
·

Γ( j+2
2 ) · Γ(n−j2 )

Γ(n2 )

= 8 ·
Γ( j+2

2 )
Γ(m2 )

·
·Γ(n−j2 )
Γ(n−m2 )

.

From (7.22) and changing the summation via i← n− 2− i and j ← n− 2− j, we
thus get

rvol T (Σm(C), α) ≤ 8 ·
n−2∑
i,j=0

i+j+m≡1
(mod 2)

Vn−2−j(K) ·
Γ( j+2

2 )
Γ(m2 )

·
Γ(n−j2 )
Γ(n−m2 )

·
(

m− 1
i−j
2 + m−1

2

)

·
(
n−m− 1
i+j
2 −

m−1
2

)
· In,n−2−i(α) , (7.23)

where we interpret
(
k
`

)
= 0 if ` < 0 or ` > k, i.e., the above summation over i, j in fact

only runs over the rectangle determined by the inequalities 0 ≤ i−j
2 + m−1

2 ≤ m− 1
and 0 ≤ i+j

2 −
m−1

2 ≤ n −m − 1. As the summation runs only over those i, j, for
which i+ j +m ≡ 1 mod 2, we may replace the summation over j by a summation
over k = i−j

2 + m−1
2 . The inequalities then transform into 0 ≤ k ≤ m − 1 and

0 ≤ i− k ≤ n−m− 1. So we have

(7.23) = 8 ·
n−2∑
i,k=0

Vn−m−1−i+2k(K) ·
Γ(m+i−2k+1

2 )
Γ(m2 )

·
Γ(n−m−i+2k+1)

2 )
Γ(n−m2 )

·
(
m− 1
k

)
·
(
n−m− 1
i− k

)
· In,n−2−i(α) . (7.24)

In order to continue, we need to estimate the intrinsic volumes. We therefore have
to split up the argumentation according to the three claims in Theorem 7.2.1.
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(1) For any cap K ∈ Kc(Sn−1), we have Vj(K) ≤ 1
2 (cf. Proposition 4.4.10).

Using Lemma 7.2.2 we have

(7.24)
(7.14)

≤ 2 ·
√
m(n−m) ·

n−2∑
i,k=0

(
m+ i− 2k

2

) i−2k
2

·
(
n−m− i+ 2k

2

)−i+2k
2

·
(
m− 1
k

)
·
(
n−m− 1
i− k

)
· In,n−2−i(α)

(7.15)

≤ 2 ·
√
m(n−m) ·

n−2∑
i=0

In,n−2−i(α) · n i
2 ·

n−2∑
k=0

(
m− 1
k

)
·
(
n−m− 1
i− k

)
(7.16)

= 2 ·
√
m(n−m) ·

n−2∑
i=0

In,n−2−i(α) · n i
2 ·
(
n− 2
i

)
(7.17)
< 6 ·

√
m(n−m) · 1

t
, if t > n

3
2 .

This shows the tail estimate in (7.14).
(2) Let C = Rn+ be the positive orthant. Recall that for this case we have

(cf. Remark 4.4.15)

Vj(K) =

(
n
j+1

)
2n

(4.20)
=

√
π · Γ(n+1

2 ) · Γ(n+2
2 )

Γ( j+2
2 ) · Γ( j+3

2 ) · Γ(n−j2 ) · Γ(n−j+1
2 ) · 2n

.

Continuing again from (7.24) we get

rvolT (Σm(Rn+), α) ≤ 8 ·
n−2∑
i,k=0

(
n

m+i−2k

)
2n

·
Γ(m+i−2k+1

2 )
Γ(m2 )

·
Γ(n−m−i+2k+1)

2 )
Γ(n−m2 )

·
(
m− 1
k

)
·
(
n−m− 1
i− k

)
· In,n−2−i(α)

= 8
√
π ·

n−2∑
i,k=0

Γ(n+1
2 ) · Γ(n+2

2 )
2n · Γ(m+i−2k+2

2 ) · Γ(n−m−i+2k+2
2 ) · Γ(m2 ) · Γ(n−m2 )

·
(
m− 1
k

)
·
(
n−m− 1
i− k

)
· In,n−2−i(α)

(4.18)
=

8
√
π

2n
·

Γ(n+1
2 )

Γ(m2 ) · Γ(n−m2 )
·
n−2∑
i,k=0

(
n/2

(m+ i− 2k)/2

)
·
(
m− 1
k

)

·
(
n−m− 1
i− k

)
· In,n−2−i(α)

(7.19)
<

16√
n · 2n/2

·
Γ(n+1

2 )
Γ(m2 ) · Γ(n−m2 )

·
n−2∑
i,k=0

(
m− 1
k

)
·
(
n−m− 1
i− k

)
· In,n−2−i(α)

(7.16)
=

16√
n · 2n/2

·
Γ(n+1

2 )
Γ(m2 ) · Γ(n−m2 )

·
n−2∑
i=0

(
n− 2
i

)
· In,n−2−i(α)

(7.18)
<

16√
n · 2n/2

·
Γ(n+1

2 )
Γ(m2 ) · Γ(n−m2 )

· exp
( n
m

)
· 1
t
, if t > m .
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Estimating Γ(n+1
2 ) <

√
n
2 · Γ(n2 ) (cf. (4.17)), and rewriting

Γ(n2 )
Γ(m2 ) · Γ(n−m2 )

(4.18)
=

m(n−m)
2n

·
(
n/2
m/2

)
,

we finally get

rvol T (Σm(Rn+), α) <
√

2 · 8 ·
Γ(n2 ) · exp( nm )

Γ(m2 ) · Γ(n−m2 ) · 2n2
· 1
t

=
√

2 · 4 · m(n−m)
n

·

(
n/2
m/2

)
2
n
2
· exp( nm ) · 1

t
(7.9)
=
√

2 · gm(n) · exp( nm ) · 1
t
.

In the proof of Theorem 7.1.1 we have seen that for fixed m the sequence gm(m+ 1),
gm(m + 2), gm(m + 3), . . . is log-concave. Additionally, the sequence exp(m+1

m ),
exp(m+2

m ), exp(m+3
m ), . . . is log-concave, which implies that also the sequence

(gm(n) · exp( nm ) | n = m+ 1,m+ 2, . . .)

is log-concave. Moreover, the maximum of this last sequence lies between 2m + 5
and 2m+ 7 for m ≥ 8, as

gm(2m+ 4) · exp( 2m+4
m )

gm(2m+ 5) · exp( 2m+5
m )

=
Γ( 2m+4

2 )
Γ( 2m+5

2 )
·

Γ(m+5
2 )

Γ(m+4
2 )
·
√

2
exp

(
1
m

) < 1 ,

gm(2m+ 8) · exp( 2m+8
m )

gm(2m+ 7) · exp( 2m+7
m )

=
Γ( 2m+8

2 )
Γ( 2m+7

2 )
·

Γ(m+7
2 )

Γ(m+8
2 )
·

exp
(

1
m

)
√

2
< 1 , for m ≥ 8 .

So in order to get an estimate of gm(n) · exp( nm ) for m ≥ 8, we only have to check
the cases n ∈ {2m+ 5, 2m+ 6, 2m+ 7}. The following asymptotics is verified easily
(for example with a computer algebra system)

gm(2m+ k) · exp( 2m+k
m )

√
m

m→∞−→ 4 · exp(2)√
2π

< 12 .

With this asymptotics in mind, it is straightforward to verify that for m ≥ 7

gm(2m+ 5) · exp( 2m+5
m ) < 20 ·

√
m

gm(2m+ 6) · exp( 2m+6
m ) < 20 ·

√
m

gm(2m+ 7) · exp( 2m+7
m ) < 20 ·

√
m .

As
√

2 · 20 < 29, we finally get

rvol T (Σm(Rn+), α) < 29 ·
√
m · 1

t
,

for t > m ≥ 8.
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(3) Lastly, we will treat the case C = Ln. Recall that in this case we have for
0 ≤ j ≤ n− 2 (cf. Example 4.4.8)

Vj(K) =

(
(n−2)/2
j/2

)
2
n
2

=
Γ(n2 )

Γ( j+2
2 ) · Γ(n−j2 )

· 1
2
n
2
.

Continuing from (7.24) we get

rvolT (Σm(Ln), α)

≤ 8 ·
n−2∑
i,k=0

Γ(n2 )
Γ(m2 ) · Γ(n−m2 )

· 1
2
n
2
·
(
m− 1
k

)
·
(
n−m− 1
i− k

)
· In,n−2−i(α)

(7.16)
= 8 ·

Γ(n2 )
Γ(m2 ) · Γ(n−m2 )

· 1
2
n
2
·
n−2∑
i=0

(
n− 2
i

)
· In,n−2−i(α)

(7.18)
= 8 ·

Γ(n2 ) · exp
(
n
m

)
Γ(m2 ) · Γ(n−m2 ) · 2n2

· 1
t

= gm(n) · exp( nm ) · 1
t

(see above)
< 20 ·

√
m · 1

t
,

for t > m ≥ 8. This finishes the proof. 2

7.3 Smoothed analysis – 1st order

In this section we will perform a smoothed analysis of first-order. By this we mean
the following: Recall that for smooth K ∈ Ksm(Sn−1) the set Σm(K) is a hy-
persurface of Grn,m. In particular, it has an induced (lower-dimensional) volume
functional. A first-order smoothed analysis means that we will give estimates of the
(lower-dimensional) volume of the intersection of Σm(K) with a ball B(W0, β) in
Grn,m divided by the (full-dimensional) volume of the ball B(W0, β).

We already face a problem at this high-level approach, as it is not clear what
metric on Grn,m one should choose, and what role this metric plays for the results.
We will choose the Hausdorff metric, as this will allow a nice argumentation. It
should be evident though, particularly in view of the transition from matrices to
subspaces Rm×n∗ → Grn,m, A 7→ im(AT ), that the geodesic metric on Grn,m would
be the more significant choice. But this would add another difficulty to the analysis,
so that we restrict to the Hausdorff metric at this point. We define forW0 ∈ Grn,m,
0 < β < π

2 ,
BH(W0, β) := {W ∈ Grn,m | dH(W0,W) < β} ,

the ball of radius β aroundW0. A smoothed analysis of CG corresponds to estimating
the volume of the intersection of BH(W0, β) with the tube around Σm relative to
the volume of BH(W0, β).

In Section D.3 (cf. Proposition D.3.4) we will show that the relative volume of
BH(W0, β) can be estimated from below via

rvolBH(W0, β) ≥ sin(β)m(n−m) ·
[
n
m

]−1

. (7.25)
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So it remains to estimate the volume of the intersection of the tube around Σm with
the ball around W0.

As already mentioned, we will describe a first attempt to estimate the (lower-
dimensional) volume of the intersection of Σm with the ball around W0. Here, we
will see that the elegant argumentation in Section 6.4 will inevitably fail. We will try
a natural but coarse approach to overcome this obstacle. The result is stated in the
following proposition. It is not yet satisfactory, as we think1 that the Grassmann
condition should allow a tail estimate of the form nO(1) · 1

sin(β) ·
1
t . But at least

we have a first proof of concept that the overall approach will work for smoothed
analyses. A fully developed smoothed analysis remains open for future research.

Theorem 7.3.1. Let K ∈ Ksm(Sn−1) be a smooth cap. Furthermore, let W0 ∈
Grn,m, and let 0 < β < π

2 . Then we have

vol (Σm(K) ∩BH(W0, β))
volBH(W0, β)

< sin(β)2−3m ·m ·
[

n
m− 1

]
·
(
n−m
m

)
·
(
n− 2
m− 1

)
.

This gives rise to a first order smoothed analysis of

Prob[CG(W) > t] . 2 · sin(β)2−3m ·m ·
[

n
m− 1

]
·
(
n−m
m

)
·
(
n− 2
m− 1

)
· 1
t

(7.26)

< 2 · sin(β)2−3m ·m ·
√
n ·
(
n

m

)2.5

· 1
t
, (7.27)

where W is chosen uniformly at random in a ball of radius β w.r.t. the Hausdorff
metric.

Note that the asymptotic of the right-hand side in (7.27) is roughly of the form
nO(m) · 1

sin(β)3m−2 · 1
t . This is certainly not satisfactory, but for fixed m it is at least

polynomial in n, which shows that it is not completely worthless.
The proof of Theorem 7.3.1 is basically a refinement of the proof of Lemma 6.5.1.

It is convenient to use the concept of curvature measures, which can be interpreted
as local versions of the intrinsic volumes. We will only define them for smooth caps
K ∈ Ksm(Sn−1), and also only for 0 ≤ i ≤ n− 2. See [30] and the references therein
for more about the spherical curvature measures.

Definition 7.3.2. Let K ∈ Ksm(Sn−1) and let M := ∂K. Then for 0 ≤ i ≤ n − 2
the ith curvature measure Φi(K, .) is defined via

Φi(K,B) :=
1

Oi · On−2−i
·
∫
B∩M

σn−2−i(p) dp , (7.28)

where B ⊆ Sn−1 is a Borel set.

Remark 7.3.3. Note that by Proposition 4.4.4 we have Φi(K,Sn−1) = Vi(K).
Furthermore, we have Φi(K, ∅) = 0, and

Φi(K,B) ≤ Φi(K,Sn−1) = Vi(K) ≤ 1
2 ,

where the first inequality follows from the nonnegativity of the function σi(p), and
the second inequality follows from Proposition 4.4.10.

1We derive this conjecture from the average analysis in Section 7.2 and from a comparison to
other smoothed analysis results (cf. the results listed in [12]).
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We will need the following local version of the kinematic formula.

Theorem 7.3.4. Let K ∈ Ksm(Sn−1), and let B ⊆ Sn−1 be a Borel set. Then for
0 ≤ i ≤ n− 2 we have

Φn−2−i(K,B) = E
S∈Si+1(Sn−1)

[Φ0(K ∩ S,B ∩ S)] , (7.29)

where S ∈ Si+1(Sn−1) is chosen uniformly at random.

Note that if M ⊂ Sn−1 is a manifold and S ⊂ Sn−1 is a uniformly random
subsphere of some fixed dimension, then with probability 1 the intersection M ∩ S
is again a smooth manifold or empty. So the quantity Φ0(K ∩ S,B ∩ S) in (7.29) is
well-defined with probability 1.

Proof. This is a special case of Korollar 5.2.2 in [30] and a special case of Theorem 2.7
in [17]. More precisely, for B ⊆ Sn−1 open and U := B∩M the formula given in [17,
Thm 2.7] is ∫

U

σi(p) dp = C(p, i) · E
S∈Si+1(Sn−1)

 ∫
U∩S

σi(p) dp

 , (7.30)

where p := n+ 1, and the constant C(p, i) is given by2 C(p, i) := (p− i− 1) ·
(
p−1
i

)
·

Op−1·Op
Oi·Oi+1·Op−i−2

. Using Proposition 4.1.20 we can simplify this constant to

C(p, i)
(4.21)

= (p− i− 1) ·
(

(p− 1)/2
i/2

)
·
[
p− 1
i

]
· Op−1 · Op
Oi · Oi+1 · Op−i−2

(4.22)
= (p− i− 1) · ωi · ωp−1−i

ωp−1
· Oi · Op−1−i

2 · Op−1
· Op−1 · Op
Oi · Oi+1 · Op−i−2

=
Oi−1

i · Oi+1
· (p− 1) · Op
Op−2

· Op−1−i

2
(4.15)

=
Op−1−i

2
.

Having simplified the constant C(p, i), we see that (7.30) is indeed equivalent
to (7.29) (note that p = n− 1). 2

With the local kinematic formula we can give an estimate of the curvature mea-
sure if the Borel set is a tube around a subsphere. (This curvature measure will
appear in the proof of Theorem 7.3.1.) The following lemma is a generalization
of [13, Lem. 4.6]. The proof is a straightforward extension of the proof given in [13].

Lemma 7.3.5. Let K ∈ Ksm(Sn−1), and let S0 ∈ Sm−1(Sn−1) be an (m − 1)-
subsphere. Then for 0 ≤ β ≤ π

2 , we have

Φn−m−1(K, T (S0, β)) ≤ sin(β)n−2m · m

2(n−m)
·
(
n−m
m

)
.

2In [17, Thm 2.7] there is a typo in the definition of the constant C(p, i). Namely, the binomial

coefficient
`p−1

i

´
is falsely replaced by p−1

i
(cp. [13, Thm. 4.2]).
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Proof. The proof goes analogous to the proof of [13, Lemma 4.6] (cf. also [17,
Prop. 3.2]). Using the kinematic formula in Theorem 7.3.4 and the fact that the
curvature measures may be estimated by 1

2 (cf. Remark 7.3.3), we get

Φn−m−1(K,B) = E
S∈Sm(Sn−1)

[Φ0(K ∩ S,B ∩ S)]

≤ E
S∈Sm(Sn−1)

[(
0 if B ∩ S = ∅
1
2 if B ∩ S 6= ∅

)]
= 1

2 · Prob
S∈Sm(Sn−1)

[B ∩ S 6= ∅] .

Setting B := T (S0, β), we get

Prob
S

[T (S0, β) ∩ S 6= ∅] = Prob
S

[∃p ∈ S : d(p, S0) ≤ β]

= Prob
S

[^min(S, S0) ≤ β] ,

where ^min(S, S0) shall denote the minimum principal angle between S0 and S. In
Corollary D.3.5 in Section D.3 in the appendix we will show that

Prob
S

[^min(S, S0) ≤ β] ≤ m(n− 2m)
n−m

·
(
n−m
m

)
· In−2m+2,1(β) .

Using the estimate of the I-function, that we stated in (7.20), we get

In−2m+2,1(β) =
∫ β

0

cos(ρ) · sin(ρ)n−2m−1 dρ ≤ sin(β)n−2m

n− 2m
.

Putting everything together finally yields

Φn−m−1(K,B) ≤ 1
2
· m(n− 2m)

n−m
·
(
n−m
m

)
· sin(β)n−2m

n− 2m
. 2

For convenience, we formulate another simple lemma that we will use in the
proof of Theorem 7.3.1.

Lemma 7.3.6. Let W ∈ Grn,m, and let H ∈ Grn,n−1 be a hyperplane that con-
tains W. Furthermore, let p ∈ Sn−1 \ H⊥, and let p̄ ∈ H ∩ Sn−1 denote the
normalization of the projection of p on H, i.e., p̄ = ‖ΠH(p)‖−1 ·ΠH(p), where ΠH

denotes the orthogonal projection on H. Then de(p̄,W) ≤ de(p,W).

Proof. W.l.o.g. we may assume that W = Rm × {0} and H = Rn−1 × {0}. If
p = (x1, . . . , xn)T , then p̄ = (1− x2

n)−
1
2 · (x1, . . . , xn−1, 0)T , and we have

de(p,W) =
√
x2
m+1 + . . .+ x2

n ,

de(p̄,W) = (1− x2
n)−

1
2 ·
√
x2
m+1 + . . .+ x2

n−1 .

As (1−x2
n)·(x2

m+1 +. . .+x2
n)−(x2

m+1 +. . .+x2
n−1) = x2

n ·(1−(x2
m+1 +. . .+x2

n)) ≥ 0,
we have

x2
m+1 + . . .+ x2

n ≥
x2
m+1 + . . .+ x2

n−1

1− x2
n

,

which implies de(p,W) ≥ de(p̄,W). 2
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Proof of Theorem 7.3.1. To ease the notation, let us abbreviate

Σ̃ := Σm ∩BH(W0, β) .

Recall that ΠM : Σm →M denotes the canonical projection from Σm to M , where
M = ∂K as usual. Let us denote the restriction of ΠM to Σ̃ by

Π̃ : Σ̃→M , Π̃(W) = ΠM (W) .

Furthermore, we denote the image of Π̃ by M̃ . Note that W ∈ BH(W0, β) implies
that for the corresponding subspheres we have S ⊂ T (S0, β), where S :=W ∩Sn−1

and S0 :=W0 ∩ Sn−1. Therefore, we have

M̃ ⊆ T (S0, β) ∩M . (7.31)

From the coarea formula (cf. Corollary 5.1.1) we get the following formula for
the volume of Σ̃

vol Σ̃ =
∫
Σ̃

1 dW (5.5)
=

∫
p∈M̃

∫
W∈Π̃−1(p)

ndet(DWΠ̃)−1 dW dp .

Note that as Π̃ is the restriction of ΠM to an open subset of the domain, their
derivatives coincide. Denoting by G̃r the set of elements Y ∈ Gr(TpM,m− 1) such
that W := R p+ Y lies in the ball around W0, i.e.,

G̃r := {Y ∈ Gr(TpM,m− 1) | R p+ Y ∈ BH(W0, β)} ,

we get

vol Σ̃ =
∫
p∈M̃

∫
W∈Π̃−1(p)

ndet(DWΠM )−1 dW dp
Lem. 6.2.9=

∫
p∈M̃

∫
Y∈G̃r

det(Wp,Y) dW dp ,

where Wp,Y denotes as usual the restriction of the Weingarten map Wp of M at
p to Y. This is the point where we face the problem that we can not argue as in
Section 6.4, as the integral is not over the whole fiber Gr(TpM,m−1) but only over
G̃r. We now have two possibilities for a coarse estimation:

1. We extend the set G̃r to all of Gr(TpM,m− 1), and use the arguments from
Section 6.4.

2. We estimate det(Wp,Y) by σm−1(p) (losing a factor of
(
n−2
m−1

)
, compared to

Corollary 6.4.9) and estimate the volume of G̃r.

It turns out that the first approach is too coarse, so that we will only pursue the
second approach.

So we have∫
Y∈G̃r

det(Wp,Y) dW ≤
∫
Y∈G̃r

σm−1(p) dW = σm−1(p) · vol(G̃r) .

To estimate the volume of G̃r, we define for p ∈M

W0(p) := (orthogonal projection of W0 on ν(p)⊥) ,
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where ν(p) denotes the unit normal field pointing inwards the cap K (cf. Sec-
tion 4.1.2). The space W0(p) is a linear subspace of the hyperplane ν(p)⊥ of
dimension at most m. In fact, for almost all p ∈ M the dimension of W0(p) is
exactly m, as is easily checked. In the following we assume that dimW0(p) = m,
i.e., W0(p) ∈ Grn,m. Note that W0(p) does not necessarily lie in Σm. Nevertheless,
we have by Lemma 7.3.6

dH(W0,W) < β ⇒ dH(W0(p),W) < β , (7.32)

if W ∈ Σm and W ∩K = {p}. So we get

vol(G̃r) ≤ vol Grn−2,m−1 · Prob
W̄∈Grn−2,m−1

[
^max(Rm, W̄) ≤ β

]
.

In Corollary D.3.5 in Section D.3 in the appendix we will see that

Prob
W̄∈Grn−2,m−1

[
^max(Rm, W̄) ≤ β

]
= sin(β)(m−1)(n−m−1)−(m−1)

= sin(β)2−m−n+m(n−m) .

Using (7.25), and using

∫
M̃

σm−1(p) dp
(7.31)

≤
∫

T (S0,β)∩M

σm−1(p) dp

(7.28)
= Om−1 · On−m−1 · Φn−m−1(K, T (S0, β)) ,

we may therefore conclude

vol Σ̃
volBH(W0, β)

=
vol Σ̃

vol Grn,m · rvolBH(W0, β)

≤ vol Grn−2,m−1

vol Grn,m
·
[
n
m

]
· sin(β)2−m−n ·

∫
p∈M̃

σm−1(p) dp

(6.50)
=
O2
m−1 · O2

n−m−1

On−2 · On−1
·
[
n
m

]
· sin(β)2−m−n · Φn−m−1(K, T (S0, β))

Lem. 7.3.5
≤

O2
m−1 · O2

n−m−1

On−2 · On−1
·
[
n
m

]
· sin(β)2−3m · m

2(n−m)
·
(
n−m
m

)
.

It remains to polish the constant. More precisely, in order to get (7.26) we will show
that

O2
m−1 · O2

n−m−1

On−2 · On−1
·
[
n
m

]
· 1

2(n−m)
=
[

n
m− 1

]
·
(
n− 2
m− 1

)
. (7.33)
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For this we use again Proposition 4.1.20:

O2
m−1 · O2

n−m−1

On−2 · On−1
·
[
n
m

]
· 1

2(n−m)
·
[

n
m− 1

]−1

·
(
n− 2
m− 1

)−1

(4.21)
(4.22)

=
O2
m−1 · O2

n−m−1

On−2 · On−1
· Om · On−m

2 · On
· 1

2(n−m)

· 2 · On
Om−1 · On−m+1

· 2 · On−2

Om−1 · On−m−1
· ωn−2

ωm−1 · ωn−m−1

=
On−m−1

On−m+1
· Om · On−m
On−1

· 1
n−m

· ωn−2

ωm−1 · ωn−m−1

=
On−m−1

On−m+1
· Om · On−m
On−1

· 1
n−m

· (m− 1) · (n−m− 1)
n− 2

· On−3

Om−2 · On−m−2

=
On−m−1

(n−m) · On−m+1
· (m− 1) · Om

Om−2
· (n−m− 1) · On−m

On−m−2
· On−3

(n− 2) · On−1

(4.15)
= 1 .

This shows (7.33) and thus (7.26).
For the inequality (7.27) we need to show that[

n
m− 1

]
·
(
n− 2
m− 1

)
·
(
n−m
m

)
<
√
n ·
(
n

m

)2.5

.

First of all, we have(
n−m
m

)(
n
m

) =
(n−m)(n−m− 1) · · · (n− 2m)

n(n− 1) · · · (n−m)
≤ 1 ,

(
n−2
m−1

)(
n
m

) =
m(n−m)
n(n− 1)

≤
n2

4

n(n− 1)
=

n

4(n− 1)
≤ 1

2
,

so that it remains to show [
n

m− 1

]
< 2 ·

√
n ·
(
n

m

)0.5

. (7.34)

Recall from Proposition 4.1.20 that
(
n
m

)
= [ nm ] ·

(
n/2
m/2

)
. Using the estimate

Γ(x+ 1
2 ) <

√
x · Γ(x)

(cf. (4.17)), we get(
n/2
m/2

)
(4.18)

=
Γ(n+2

2 )
Γ(m+2

2 ) · Γ(n−m+2
2 )

=
n

2
·

Γ(n2 )
Γ(m+2

2 ) · Γ(n−m+2
2 )

>
n

2
·

√
2
n · Γ(n+1

2 )√
m+1

2 · Γ(m+1
2 ) ·

√
n−m+1

2 · Γ(n−m+1
2 )

(4.19)
=

√
2n

(m+ 1)(n−m+ 1) · π
·
[
n
m

]
.
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This implies(
n

m

)
=
[
n
m

]
·
(
n/2
m/2

)
>

√
2n

(m+ 1)(n−m+ 1) · π
·
[
n
m

]2

. (7.35)

Furthermore, we estimate

[ n
m−1 ]
[ nm ]

=
Γ(m2 ) · Γ(n−m+2

2 )
Γ(m+1

2 ) · Γ(n−m+1
2 )

=
2
m
·

Γ(m+2
2 )

Γ(m+1
2 )
·

Γ(n−m+2
2 )

Γ(n−m+1
2 )

<
2
m
·
√
m+ 1

2
·
√
n−m+ 1

2
=

√
(m+ 1)(n−m+ 1)

m
. (7.36)

So finally we get

[ n
m−1 ]√(

n
m

) (7.35)
<

(
(m+ 1)(n−m+ 1) · π

2n

) 1
4

· [ n
m−1 ]
[ nm ]

(7.36)
<

(
(m+ 1)(n−m+ 1) · π

2n

) 1
4

·
√

(m+ 1)(n−m+ 1)
m

=
(π

2

) 1
4 ·
(
m+ 1
m

) 3
4

︸ ︷︷ ︸
≤23/4

·
(
n−m+ 1

n

) 1
4

︸ ︷︷ ︸
≤1

·
√
n−m+ 1
m

1
4︸ ︷︷ ︸

≤
√
n

< 2 ·
√
n ,

which shows (7.34) and thus finishes the proof. 2
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Appendix A

Miscellaneous

This chapter is mainly devoted to outsourced computations that are too long for an
inclusion in the text, but that we give for the sake of completeness.

A.1 On a threshold phenomenon in the sphere

In the average analysis of the Grassmann condition we have seen that the ratio m
n

plays a significant role for the asymptotic behavior of the expectation of the Grass-
mann condition (cf. Remark 7.1.2 and Remark 7.1.3). In this section we will com-
pute some elementary asymptotics in the sphere that may give a reason for the
appearance of this ratio.

To start with, it is well known that the volume of Sn−1 concentrates around
any hypersphere, i.e., any (n− 2)-dimensional subsphere of Sn−1. In formulas, this
means the following. For every α > 0 we have

lim
n→∞

vol T (Sn−2, α)
volSn−1

= 1 ,

where we consider Sn−2 as an embedded hypersphere in Sn−1. What if we don’t
want to consider hyperspheres, but general m-dimensional subspheres? It turns out
that the ratio m

n is the decisive quantity. This is shown by the following proposition.
In broad terms, its statement is that for large n the relative volume of the α-
tube around an m-dimensional subsphere is almost zero if α < arccos(

√
m
n ) and

almost 1 if α > arccos(
√

m
n ). So there is an interesting threshold phenomenon that

generalizes the above mentioned observation about the concentration of the volume
around hyperspheres. Moreover, this threshold phenomenon could be the reason for
the appearance of the ratio m

n in the average analysis of the Grassmann condition.

Proposition A.1.1. Let c ∈ [0, 1], and let m : N → N be such that m(n) ≤ n for
all n ∈ N, and lim m(n)

n = c. Then

lim
n→∞

vol T (Sm(n)−1, α)
volSn−1

=

{
0 if α < arccos(

√
c)

1 if α > arccos(
√
c) .

We will prove this proposition by making use of the kinematic formula and the
following well-known fact about the binomial distribution.
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Proposition A.1.2. For n ∈ N and c ∈ [0, 1] let

fn,c(k) :=
(
n

k

)
· ck · (1− c)n−k ,

Fn,c(x) :=
bxnc∑
k=0

fn,c(k) .

Then for n→∞ the functions Fn,c converge pointwise to

Fn,c → Fc , Fc(x) =

{
0 if x < c

1 if x > c .

Proof. This is readily deduced from Chebyshev’s inequality

Prob
[
|µ−X| ≥ a

]
≤ σ2

a2
,

where µ := E[X] denotes the expectationo of X, and σ2 denotes the variance of X.
More precisely, the expectation of the binomial distribution is given by µ = n · c,
and the variance is given by σ2 = n · c(1− c). So for x < c we have

Fn,c(x) =
bxnc∑
k=0

fn,c(k) ≤ Prob
[
|µ−X| ≥ n(c− x)

]
≤ n · c(1− c)
n2 · (c− x)2

n→∞−→ 0 .

Similarly, we get that Fn,c(x)→ 1 for n→∞, if x > c. 2

Proof of Proposition A.1.1. Observe that for p ∈ Sn−1 and S ∈ Sk(Sn−1) we have

p ∈ T (S, α) ⇐⇒ S ∩B(p, α) 6= ∅ .

It is irrelevant if we fix S0 ∈ Sk(Sn−1) and choose p ∈ Sn−1 uniformly at random,
or if we fix p0 ∈ Sn−1 and choose S ∈ Sk(Sn−1) uniformly at random, which is seen
by the following small computation

vol T (S0, α)
volSn−1

= Prob
p∈Sn−1

[p ∈ T (S0, α)] = Prob
Q∈O(n)

[Qp0 ∈ T (S0, α)]

= Prob
Q∈O(n)

[p0 ∈ T (Q−1S0, α)] = Prob
S∈Sk(Sn−1)

[p0 ∈ T (S, α)]

= Prob
S∈Sk(Sn−1)

[B(p0, α) ∩ S 6= ∅] .

Applying the kinematic formula as stated in Corollary 4.4.12 and using the formula
for the intrinsic volumes of circular caps as derived in Example 4.4.8 yields

Prob[B(p0, α) ∩ S 6= ∅] = 2 ·
n−1∑

j=n−1−k
j≡n−1−k

(mod 2)

Vj(B(p0, α))

=
n−2∑

j=n−1−k
j≡n−1−k

(mod 2)

Γ(n−2
2 + 1)

Γ( j2 + 1) · Γ(n−2−j
2 + 1)

· sin(α)j · cos(α)n−2−j

+ δeven(k) · Vn−1(B(p0, α)) ,
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where δeven(k) = 1 if k is even, and δeven(k) = 0 if k is odd. The single term
Vn−1(B(p0, α)), which we have computed in Proposition 4.1.18, is irrelevant for the
asymptotics that we are interested in, as

Vn−1(B(p0, α)) =
On−2

On−1
·
∫ α

0

sin(ρ)n−2 dρ→ 0 for n→∞ .

With h := n−2
2 , ` := n−2−j

2 , and c := cos2 α we may rewrite

Γ(n−2
2 + 1)

Γ( j2 + 1) · Γ(n−2−j
2 + 1)

· sin(α)j · cos(α)n−2−j =
(
h

`

)
· (1− c)h−` · c` .

For n even and k odd we thus get

Prob[B(p0, α) ∩ S 6= ∅] =

k−1
2∑
i=0

(n−2
2

i

)
· (cos2 α)i · (1− cos2 α)

n−2
2 −i ,

i.e., the value of the distribution function of the binomial distribution with param-
eters n−2

2 and cos2 α at k−1
2 . For the case n and k even and for the case n odd this

does not hold as nice as in the above case. But for the asymptotics this is not so
important so that the claimed statement follows from the well-known asymptotics
stated in Proposition A.1.2. 2

A.2 Intrinsic volumes of tubes

In this section we will compute the intrinsic volumes of tubes of convex sets, assum-
ing that these tubes are again convex.

Proposition A.2.1. Let K ∈ Kc(Sn−1) and α > 0 such that the tube Kα :=
T (K,α) ∈ Kc(Sn−1) is still convex. Then the intrinsic volumes of the tube Kα are
given by

Vn−m−1(Kα) =
(

(n− 2)/2
(m− 1)/2

) n−2∑
i,j=0

dnmij ·
[
n− 2
j

]
· cos(α)i · sin(α)n−2−i · Vj(K) ,

where 1 ≤ m ≤ n− 1, dnmij as defined in (6.5) in Theorem 6.1.1.

The coefficients dnmij arose from the polynomial identity (cf. proof of Proposi-
tion 6.4.6)

(X − Y )m−1 · (1 +XY )n−m−1 =
n−2∑
i,j=0

(
n− 2
j

)
· dnmij ·Xn−2−j · Y n−2−i .

In the following lemma we will show that they also appear in a slightly different
polynomial identity.

Lemma A.2.2. For n ≥ 2, 0 ≤ j ≤ n−2, and 1 ≤ m ≤ n−1 we have the following
identity of formal polynomials

(1−XY )j · (X + Y )n−2−j =
n−1∑
m=1

n−2∑
i=0

(
n− 2
m− 1

)
· dnmij ·Xn−2−i · Y m−1 . (A.1)
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Proof. Expanding the terms yields

(1−XY )j · (X + Y )n−2−j

=

(
j∑

k=0

(
j

k

)
· (−1)j−k ·Xj−k · Y j−k

)
·

(
n−2−j∑
`=0

(
n− 2− j

`

)
·Xn−2−j−` · Y `

)
(∗)
=
∑
i,m

(
j

i+j
2 −

m−1
2

)
·
(
n− 2− j
i−j
2 + m−1

2

)
· (−1)

i−j
2 −

m−1
2 ·Xn−2−i · Y m−1 ,

where in (∗) we have used the substitutions k = i+j
2 −

m−1
2 and ` = i−j

2 + m−1
2 , and

where the last summation runs over all 0 ≤ i ≤ n− 2, 1 ≤ m ≤ n− 1, which satisfy
i+ j +m ≡ 1 (mod 2). We finally compute(
n−2
m−1

)
·
( m−1
i−j
2 +m−1

2

)
·
( n−m−1
i+j
2 −

m−1
2

)(
n−2
j

) =
(n− 2)!

(m− 1)! · (n−m− 1)!
· j! · (n− 2− j)!

(n− 2)!

· (m− 1)!
( i−j2 + m−1

2 )! · (m−1
2 − i−j

2 )!
· (n−m− 1)!

( i+j2 −
m−1

2 )! · (n− 2− m−1
2 − i+j

2 )!

=
j!

( i+j2 −
m−1

2 )! · (m−1
2 − i−j

2 )!
· (n− 2− j)!

( i−j2 + m−1
2 )! · (n− 2− m−1

2 − i+j
2 )!

=
(

j
i+j
2 −

m−1
2

)
·
(
n− 2− j
i−j
2 + m−1

2

)
.

This finishes the proof. 2

For the following lemma recall that In,j(α) =
∫ α

0
cos(ρ)j · sin(ρ)n−2−j dρ.

Lemma A.2.3. For n ≥ 2, 0 ≤ j ≤ n− 2, and α, β ∈ R we have

In,j(α+ β) = In,j(α) +
n−1∑
m=1

(
n− 2
m− 1

)
· In,n−m−1(β) (A.2)

·
n−2∑
i=0

dnmij · cos(α)i · sin(α)n−2−i .

Proof. Using the addition theorem for sin and cos, we compute

cos(α+ ρ)j · sin(α+ ρ)n−2−j

= (cos(α) · cos(ρ)− sin(α) · sin(ρ))j · (sin(α) · cos(ρ) + cos(α) · sin(ρ))n−2−j

= cos(α)n−2 · cos(ρ)n−2 · (1− tan(α) tan(ρ))j · (tan(α) + tan(ρ))n−2−j

(A.1)
= cos(α)n−2 · cos(ρ)n−2 ·

n−1∑
m=1

n−2∑
i=0

(
n− 2
m− 1

)
· dnmij · tan(α)n−2−i · tan(ρ)m−1

=
n−1∑
m=1

(
n− 2
m− 1

)
· sin(ρ)m−1 · cos(ρ)n−m−1 ·

n−2∑
i=0

dnmij · cos(α)i · sin(α)n−2−i .

From this we get

In,j(α+ β) = In,j(α) +
∫ β

0

cos(α+ ρ)j · sin(α+ ρ)n−2−j dρ

= In,j(α) +
n−1∑
m=1

(
n− 2
m− 1

)
· In,n−m−1(β) ·

n−2∑
i=0

dnmij · cos(α)i · sin(α)n−2−i . 2
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Proof of Proposition A.2.1. The volume of the tube around Kα is given by

vol T (Kα, β) = vol T (K,α+ β)

(4.39)
= volK +

n−2∑
j=0

In,j(α+ β) · Oj · On−2−j · Vj(K)

(A.2)
= volK +

n−2∑
j=0

(
In,j(α) +

n−1∑
m=1

(
n− 2
m− 1

)
· In,n−m−1(β)

·
n−2∑
i=0

dnmij · cos(α)i · sin(α)n−2−i
)
· Oj · On−2−j · Vj(K)

(4.39)
= volKα +

n−1∑
m=1

In,n−m−1(β) ·
n−2∑
i,j=0

dnmij ·
(
n− 2
m− 1

)
· Oj · On−2−j

· cos(α)i · sin(α)n−2−i · Vj(K) .

Therefore, again by (4.39), we have

Vn−m−1(Kα) =
n−2∑
i,j=0

dnmij ·
(
n−2
m−1

)
· Oj · On−2−j

Om−1 · On−m−1
· cos(α)i · sin(α)n−2−i · Vj(K)

(4.24),(4.22)
=

n−2∑
i,j=0

dnmij ·
(

(n− 2)/2
(m− 1)/2

)
·
[
n− 2
j

]
· cos(α)i · sin(α)n−2−i · Vj(K) .

This finishes the proof. 2

A.3 On the twisted I-functions

In this section we will fill the gap in the proof of the equality case (6.6) in Theo-
rem 6.1.1, that we only proved for K ∈ Ksm(Sn−1) in Section 6.5. So far we used a
differential geometric approach for the proof of Theorem 6.1.1, but now we will use a
more general convex geometric approach. The main idea is to use the kinematic for-
mula, resp. Corollary 4.4.12, to derive an alternative expression for rvol T P(Σm, α).
More precisely, let K ∈ Kr(Sn−1), and Σm := Σm(K). Then for W ∈ Grn,m we
have

W ∈ T P(Σm, α) ⇐⇒ W ∩ T (K,α) 6= ∅ and W ∩ int(K) = ∅ .
If the tube Kα := T (K,α) is convex, then we can use Corollary 4.4.12 to compute
the probability of the right-hand side, assuming thatW ∈ Grn,m is chosen uniformly
at random. Note that this coincides with the relative volume of T P(Σm, α). The
result will depend on the intrinsic volumes of Kα, which we have computed in
Proposition A.2.1. Unfortunately, we will not get the formula (6.6) directly, but
only via a short detour over the twisted I-functions, by which we mean the functions

n−2∑
i=0

dnmij · In,i(α) .

These functions appear in the tube formula (6.6) and can be interpreted as a sub-
stitute of the I-functions from the spherical tube formula (4.39).

The overall argumentation is as follows. The kinematic formula yields an alter-
native expression of rvol T P(Σm, α) that holds for all regular cones. Comparing this
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with the formula we gave in (6.6) yields an alternative expression for the twisted
I-functions. Replacing the corresponding expression in the formula that we derived
from the kinematic formula then shows that (6.6) indeed holds for all K ∈ Kr(Sn−1).

This argumentation is a little ugly, but it yields the desired result. It also shows
that

1. the discontinuity of the map αmax (cf. Remark 3.1.17) has a lot of negative
consequences,

2. the case where the tube Kα = T (K,α) is convex can be handled by quite
different methods.

Proposition A.3.1. Let the setting be as in Theorem 6.1.1. Then for 0 ≤ α ≤ α0

rvol T P(Σm, α) = 2 ·
n−2∑
j=0

Vj(K)

(
− δ(n,m, j) + δodd(m) · On−1,j(α)

On−1

+
n−2∑

k=n−m
k≡n−m
(mod 2)

(
(n− 2)/2
k/2

)
·
n−2∑
i=0

dn,n−k−1
ij ·

[
n− 2
j

]
· cos(α)i · sin(α)n−2−i

)
. (A.3)

where δodd(m) = 1 if m is odd and δodd(m) = 0 if m is even, and δ(n,m, j) = 1 if
j ∈ {n−m,n−m+ 2, . . .} and δ(n,m, j) = 0 else.

Proof. Recall from Corollary 4.4.12 that forW ∈ Grn,m chosen uniformly at random
we have

Prob[K ∩W 6= ∅] = 2 ·
n−1∑

k=n−m
k≡n−m
(mod 2)

Vk(K) .

If K ∈ K(Sn−1) is such that Kα := T (K,α) ∈ K(Sn−1) we thus get

rvol T P(Σm, α) = Prob[W ∩Kα 6= ∅]− Prob[W ∩K 6= ∅]

= 2 ·
n−2∑

k=n−m
k≡n−m
(mod 2)

(Vk(Kα)− Vk(K)) + 2 · δodd(m) · 1
On−1

· (volKα − vol(K))

(4.39)
= 2 ·

n−2∑
k=n−m
k≡n−m
(mod 2)

(Vk(Kα)− Vk(K)) + 2 · δodd(m) ·
n−2∑
j=0

On−1,j(α)
On−1

· Vj(K) . (A.4)

By Proposition A.2.1 we have for 0 ≤ k ≤ n− 2

Vk(Kα) =
(

(n− 2)/2
k/2

)
·
n−2∑
i,j=0

dn,n−k−1
ij ·

[
n− 2
j

]
· cos(α)i · sin(α)n−2−i · Vj(K) .
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From (A.4) we thus get (after a small rearrangement of the summation terms)

rvol T P(Σm, α) = 2 ·
n−2∑
j=0

Vj(K)

(
− δ(n,m, j) + δodd(m) · On−1,j(α)

On−1

+
n−2∑

k=n−m
k≡n−m
(mod 2)

(
(n− 2)/2
k/2

)
·
n−2∑
i=0

dn,n−k−1
ij ·

[
n− 2
j

]
· cos(α)i · sin(α)n−2−i

)
.

This finishes the proof. 2

Corollary A.3.2. For 1 ≤ m ≤ n− 1, 0 ≤ j ≤ n− 2, and α ∈ [0, π2 ] we have

m(n−m)
n

·
(
n/2
m/2

)
·
n−2∑
i=0

dnmij · In,i(α) =
n−2∑
i=0

cos(α)i · sin(α)n−2−i

·
m−1∑
`=1

`≡m−1
(mod 2)

(
(n− 2)/2
(`− 1)/2

)
· dn`ij −

δ(n,m, j)[
n−2
j

] +
δodd(m)[
n−2
j

] · On−1,j(α)
On−1

,

where dnmij defined as in Theorem 6.1.1, and δodd and δ as in Proposition A.3.1.

Proof. Let K = B(z, β), with 0 < β ≤ π
2 , be a circular cap. For this choice of K

we have α0 = π
2 − β and Kα = B(z, α+ β)). For 0 ≤ j ≤ n− 2 we have

Vj(K) =
(

(n− 2)/2
j/2

)
· cos(β)n−2−j · sin(β)j

2

(cf. Example 4.4.8). By (A.3) we thus have for 0 ≤ α ≤ π
2 − β

rvol T P(Σm, α) =
n−2∑
j=0

(
(n− 2)/2

j/2

)
· cos(β)n−2−j · sin(β)j

·

(
n−2∑

k=n−m
k≡n−m
(mod 2)

n−2∑
i=0

dn,n−k−1
ij ·

(
(n− 2)/2
k/2

)
·
[
n− 2
j

]
· cos(α)i · sin(α)n−2−i

− δ(n,m, j) + δodd(m) · On−1,j(α)
On−1

)
. (A.5)

On the other hand, by (6.6) in Theorem 6.1.1 we have

rvol T P(Σm, α) =
2m(n−m)

n

(
n/2
m/2

)
·
n−2∑
j=0

Vj(K) ·
[
n− 2
j

]
·
n−2∑
i=0

dnmij · In,i(α)

=
n−2∑
j=0

(
(n− 2)/2

j/2

)
· cos(β)n−2−j · sin(β)j · m(n−m)

n
·
(
n/2
m/2

)
·
[
n− 2
j

]

·
n−2∑
i=0

dnmij · In,i(α) . (A.6)
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Using that the functions cos(β)n−2−j · sin(β)j , 0 ≤ j ≤ n− 2, are linearly indepen-
dent, a comparison of the coefficients between (A.5) and (A.6) yields

m(n−m)
n

·
(
n/2
m/2

)
·
n−2∑
i=0

dnmij · In,i(α)

=
n−2∑
i=0

cos(α)i · sin(α)n−2−i ·
n−2∑

k=n−m
k≡n−m
(mod 2)

(
(n− 2)/2
k/2

)
· dn,n−k−1
ij

− δ(n,m, j)[
n−2
j

] +
δodd(m)[
n−2
j

] · On−1,j(α)
On−1

.

This all holds for 0 < β ≤ π
2 and 0 ≤ α ≤ π

2 −β, and therefore for all 0 ≤ α ≤ π
2 . 2

Corollary A.3.3. The formula (6.6) in Theorem 6.1.1 holds for all K ∈ Kr(Sn−1).

Proof. The formula for rvol T (Σm(K), α) given in (A.3) in Proposition A.3.1 holds
for all K ∈ Kr(Sn−1). In Corollary A.3.2 we have seen that the difference be-
tween (A.3) and the formula (6.6) given in Theorem 6.1.1 consists of an alternative
representation of the twisted I-functions. Interchanging these different representa-
tions transfers (A.3) into (6.6). The validity of (A.3) for all K ∈ Kr(Sn−1) thus
also transfers to (6.6). 2



Appendix B

Some computation rules for
intrinsic volumes

In this chapter we will provide the proofs for Proposition 4.4.13 and Proposi-
tion 4.4.18.

B.1 Spherical products

We begin with the spherical statement of Proposition 4.4.13. Let K1 ∈ K(Sn1−1),
K2 ∈ K(Sn2−1), and let (cf. Section 3.1.1)

K := K1 ~K2 = (C1 × C2) ∩ Sn−1 ,

where Ci := cone(Ki) ⊂ Rni , i = 1, 2, and n := n1 + n2. Recall that the intrinsic
volume polynomial of K is defined via (cf. (4.45))

V (K;X) = V−1(K) + V0(K) ·X + . . .+ Vn−1(K) ·Xn .

The spherical statement of Proposition 4.4.13 says that the intrinsic volume polyno-
mial of K is given by the product of the intrinsic volume polynomials of K1 and K2,
i.e.,

V (K;X) = V (K1;X) · V (K2;X) . (B.1)

We thus have to show that for −1 ≤ j ≤ n− 1

Vj(K) =
j+1∑
k=0

Vk−1(K1) · Vj−k(K2) . (B.2)

The first step in the proof is to show that it suffices to prove (B.1) for polyhedral
K1 and K2. Indeed, recall that the set of polyhedral convex sets Kp(Sn−1) lies dense
in K(Sn−1) (cf. Section 3.3). If Ki ∈ K(Sni−1) is approximated by the sequence
(Ki,j)j in Kp(Sni−1), i = 1, 2, then

lim
j→∞

(K1,j ~K2,j︸ ︷︷ ︸
=:Kj

)
(∗)
= lim

j→∞
K1,j ~ lim

j→∞
K2,j = K1 ~K2 = K ,

where the step (∗) follows from the continuity of the map

K(Sn1−1)×K(Sn2−1)→ K(Sn−1) , (K1,K2) 7→ K1 ~K2 ,
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which is verified easily. As the intrinsic volumes are continuous, we get

V (K;X) = lim
j→∞

V (Kj ;X)
(∗∗)
= lim

j→∞
(V (K1,j ;X) · V (K2,j ;X))

= lim
j→∞

V (K1,j ;X) · lim
j→∞

V (K2,j ;X) = V (K1;X) · V (K2;X) ,

where (∗∗) follows, if we have shown (B.1), resp. (B.2), for polyhedral K1, K2.
We will deduce (B.2) for polyhedral K1, K2 from the characterization of the

intrinsic volumes in Proposition 4.4.6. Before we can do this we have to recall some
well-known facts about polyhedral cones.

Let C1 ⊆ Rn1 and C2 ⊆ Rn1 , and thus also C = C1 × C2 ⊆ Rn be polyhedral
cones. If ΠC1 ,ΠC2 ,ΠC denote the projection maps onto C1, C2, C, respectively, we
get for x = (x1, x2) ∈ Rn

ΠC(x) = (ΠC1(x1),ΠC2(x2)) .

Moreover, if F(C) denotes the set of faces of C, then we have

F(C) = {F1 × F2 | F1 ∈ F(C1) , F2 ∈ F(C2)} .

Recall that for x ∈ C we have defined (cf. (4.41))

face(x) :=

{
C if x ∈ int(C)
F if x ∈ relint(F ) and F a face of C.

Let face1 and face2 denote the corresponding functions with C being replaced by
C1 and C2, respectively. Then for x = (x1, x2) ∈ C = C1 × C2, we have

face(x) = face1(x1)× face2(x2) . (B.3)

Recall also that we have defined the function

dC : Rn → {0, 1, 2, . . . , n} , x 7→ dim(face(ΠC(x))) .

As C is a cone, we have dC(λx) = dC(x) for all x ∈ Rn, λ > 0. From (B.3) we get
for x = (x1, x2) ∈ Rn

dC(x) = dC1(x1) + dC2(x2) . (B.4)

In Proposition 4.4.6 we have shown that the jth intrinsic volume of K = C∩Sn−1

is given by
Vj(K) = Prob

p∈Sn−1
[dC(p) = j + 1] ,

where p ∈ Sn−1 is drawn uniformly at random. If x ∈ Rn is a normal distributed
variable x ∼ N (0, In), then with probability 1 we have x 6= 0. Moreover, the induced
probability distribution on Sn−1 via x 7→ ‖x‖−1 · x is the uniform distribution. As
dC(λx) = dC(x) for all x ∈ Rn, λ > 0, we get

Vj(K) = Prob
x∼N (0,In)

[dC(x) = j + 1] . (B.5)

The normal distribution has the pleasing fact that

x = (x1, x2) ∼ N (0, In) ⇐⇒ x1 ∼ N (0, In1) , x2 ∼ N (0, In2) .
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Therefore, we get

Vj(K)
(B.5)
= Prob

x1∼N (0,In1 )

x2∼N (0,In2 )

[dC(x1, x2) = j + 1]
(B.4)
= Prob

x1,x2
[dC1(x1) + dC2(x2) = j + 1]

=
j+1∑
k=0

Prob
x1

[dC1(x1) = k] · Prob
x2

[dC2(x2) = j + 1− k]

(B.5)
=

j+1∑
k=0

Vk−1(K1) · Vj−k(K2) .

This shows (B.2) for polyhedral K1, K2, and thus finishes the proof. 2

B.2 Euclidean products

In this section we will give the proof of the euclidean statement of Proposition 4.4.13.
We need to show that for euclidean convex bodies K1 ∈ K(Rn1), K2 ∈ K(Rn2), and
K := K1 ×K2 ∈ K(Rn), n = n1 + n2, we have

V e(K;X) = V e(K1;X) · V e(K2;X) ,

where V e(K;X) denotes the euclidean intrinsic volume polynomial (cf. (4.48))

V e(K;X) =
n∑
j=0

V ej (K) ·Xj .

So we need to show that for 0 ≤ j ≤ n

V ej (K) =
j∑

k=0

V ek (K1) · V ej−k(K1) . (B.6)

In contrast to the spherical case, the euclidean intrinsic volumes do not form a prob-
ability distribution. Moreover, we do not have a characterization of the euclidean
intrinsic volumes similar to the characterization of the spherical intrinsic volumes
from Proposition 4.4.6. The proof of (B.6) will therefore be completely different to
the proof of (B.2). Instead of arguing over polyhedral convex sets, we will argue
over smooth convex bodies.

Let K ∈ K(Rn) such that int(K) 6= ∅, and such that the boundary M := ∂K
is smooth and oriented such that the normal direction points inwards the convex
body. Then from (the euclidean version of) Weyl’s tube formula in Theorem 4.3.2
we get

voln T e(K, r) = volnK +
n−1∑
j=0

rn−j

n− j
·
∫
x∈M

σn−1−j(x) dx .

Comparing this formula with the Steiner polynomial

voln T e(K, r) =
n∑
i=0

ωi · V en−i(K) · ri . (B.7)

yields V en (K) = volnK, and for 0 ≤ j ≤ n− 1

V ej (K) =
1

(n− j) · ωn−j
·
∫
x∈M

σn−1−j(x) dx . (B.8)
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Using an approximation argument similar to the spherical case, we may assume
for the proof of (B.6) w.l.o.g. that K1 and K2 have nonempty interiors, and the
boundaries of K1 and K2 are smooth. We denote these by

M1 := ∂K1 , M2 := ∂K2 .

Furthermore, let νi : Mi → Rni denote the unit normal field of Mi such that for
xi ∈Mi the vector νi(xi) points inwards the convex body Ki, i = 1, 2.

The boundary of the product K = K1 ×K2 decomposes via

∂K = (int(K1)×M2) ∪̇ (M1 × int(K2)) ∪̇ (M1 ×M2) .

For x = (x1, x2) ∈ ∂K the normal cone of K at x is thus given by

Nx(K) =


{0} × R− · ν2(x2) if x ∈ int(K1)×M2

R− · ν1(x1)× {0} if x ∈M1 × int(K2)
R− · ν1(x1)× R− · ν2(x2) if x ∈M1 ×M2 ,

(B.9)

where R− = {r ∈ R | r ≤ 0}. Let us denote

M×0 := int(K) = int(K1)× int(K2)

M×1 := int(K1)×M2

M×2 := M1 × int(K2)

M×3 := M1 ×M2 ,

so that K decomposes into

K = M×0 ∪̇M
×
1 ∪̇M

×
2 ∪̇M

×
3 .

Moreover, the pieces M×i , i = 0, 1, 2, 3, are smooth manifold, and from (B.9) it is
easily seen that the duality bundles NMi (cf. (3.8)) are also smooth manifolds. It
follows that K is a stratified convex body. Furthermore, all pieces M×i , i = 0, 1, 2, 3,
are essential.

From the euclidean part of Theorem 4.3.2 we thus get (note that M×1 and M×2
have codimension 1 in Rn)

voln T e(K, r) = volnK +
n−1∑
j=0

rn−j

n− j
·
∫

x∈M×1

σ
(×,1)
n−1−j(x) dx

+
n−1∑
j=0

rn−j

n− j
·
∫

x∈M×2

σ
(×,2)
n−1−j(x) dx

+
n−2∑
j=0

rn−j

n− j
·
∫

x∈M×3

∫
η∈NSx

σ
(×,3)
n−2−j(x,−η) dη dx , (B.10)

where the notation σ(×,i) shall indicate the dependence on M×i .
The volume of K is obviously given by

volnK = voln1 K1 · voln2 K2 = V en1
(K1) · V en2

(K2) . (B.11)
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As for the principal curvatures of the hypersurfaces M×1 and M×2 in Rn, it is easily
seen that these are given by

x = (x1, x2) ∈M×1 : 0, . . . , 0︸ ︷︷ ︸
n1-times

, κ
(2)
1 (x2), . . . , κ(2)

n2−1(x2) ,

x = (x1, x2) ∈M×2 : κ(1)
1 (x1), . . . , κ(1)

n1−1(x1) , 0, . . . , 0︸ ︷︷ ︸
n2-times

,

where κ(1) and κ(2) shall denote the corresponding principal curvatures of M1

and M2, respectively. For the elementary symmetric polynomials in the principal
curvatures we thus get for x = (x1, x2) ∈M×1 and n− 1− j > n2 − 1

σ
(×,1)
n−1−j(x) = 0 ,

and therefore ∫
x∈M×1

σ
(×,1)
n−1−j(x) dx = 0 . (B.12)

For n− 1− j ≤ n2 − 1 we get

σ
(×,1)
n−1−j(x) = σn−1−j(0, . . . , 0︸ ︷︷ ︸

n1-times

, κ
(2)
1 (x2), . . . , κ(2)

n2−1(x2))

= σn−1−j(κ
(2)
1 (x2), . . . , κ(2)

n2−1(x2))

= σ
(2)
n−1−j(x2) ,

where the notation σ(1) shall indicate the dependence on M1. From this we get∫
x∈M×1

σ
(×,1)
n−1−j(x) dx =

∫
x1∈int(K1)

∫
x2∈M2

σ
(2)
n−1−j(x2) dx

= voln1 K1 ·
∫

x2∈M2

σ
(2)
n−1−j(x2) dx

(B.8)
= V en1

(K1) · (n− j) · ωn−j · V ej−n1
(K2) . (B.13)

Similarly, we get∫
x∈M×2

σ
(×,2)
n−1−j(x) dx =

{
0 if n− 1− j > n1

(n− j) · ωn−j · V ej−n2
(K1) · V en2

(K2) if n− 1− j ≤ n1 .

(B.14)
It remains to treat the contribution of M×3 . Note that M×3 is a submanifold

of codimension 2 in Rn. The normal cone of K at x = (x1, x2) ∈ M×3 is the 2-
dimensional product of the half-lines R− · ν1(x1) and R− · ν2(x2) (cf. (B.9)). As for
the intersection NS

x (K) = Nx(K) ∩ Sn−1 we get

NS
x (K) = {(− cos(ρ) · ν1(x1),− sin(ρ) · ν2(x2)) | 0 ≤ ρ ≤ π

2 } . (B.15)

It is straightforward to verify that the principal curvatures of M×3 at x = (x1, x2)
in direction (c ν1(x1), s ν2(x2)) are given by

c · κ(1)
1 (x1), . . . , c · κ(1)

n1−1(x1) , s · κ(2)
1 (x2), . . . , s · κ(2)

n2−1(x2) . (B.16)
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Note that the symmetric functions in these curvatures can be written in the form

σ`(c · κ(1)
1 (x1), . . . , c · κ(1)

n1−1(x1) , s · κ(2)
1 (x2), . . . , s · κ(2)

n2−1(x2)) (B.17)

=
∑̀
k=0

ck · σk
(
κ

(1)
1 (x1), . . . , κ(1)

n1−1(x1)
)
· s`−k · σ`−k

(
κ

(2)
1 (x2), . . . , κ(2)

n2−1(x2)
)
,

with the usual convention σN (a1, . . . , an) = 0, if N > n. From (B.15), (B.16),
and (B.17), we thus get∫
x∈M×3

∫
η∈NSx

σ
(×,3)
n−2−j(x,−η) dη dx

=
∫

x∈M×3

∫ π
2

0

σ
(×,3)
n−2−j(x, (− cos(ρ) ν1(x1),− sin(ρ) ν2(x2))) dρ dx

=
n−2−j∑
k=0

∫ π
2

0

cos(ρ)k · sin(ρ)n−2−j−k dρ ·
∫

x1∈M1

σ
(1)
k (x1) dx1 ·

∫
x2∈M2

σ
(2)
n−2−j−k(x2) dx2 .

Recall that in Corollary 4.1.19 we have seen that
∫ π

2
0

cos(ρ)k · sin(ρ)` dρ = Ok+`+1
Ok·O` .

We may thus continue

=
n−2−j∑
k=0

On−1−j

Ok · On−2−j−k
·
∫

x1∈M1

σ
(1)
k (x1) dx1 ·

∫
x2∈M2

σ
(2)
n−2−j−k(x2) dx2

(B.8)
=

n−2−j∑
k=0

(n− j) · ωn−j · V en1−1−k(K1) · V ej+k+1−n1
(K2) . (B.18)

Combining (B.10), (B.11), (B.12), (B.13), (B.14), and (B.18) yields

voln T e(K, r) = V en1
(K1) · V en2

(K2) +
n−1∑
j=0

rn−j · ωn−j · V en1
(K1) · V ej−n1

(K2)

+
n−1∑
j=0

rn−j · ωn−j · V ej−n2
(K1) · V en2

(K2)

+
n−2∑
j=0

n−2−j∑
k=0

rn−j · ωn−j · V en1−1−k(K1) · V ej+k+1−n1
(K2)

=
n∑
j=0

n−1−j∑
k=−1

rn−j · ωn−j · V en1−1−k(K1) · V ej+k+1−n1
(K2)

[`:=n1−1−k]
=

n∑
j=0

rn−j · ωn−j ·
n1∑

`=j−n2

V e` (K1) · V ej−`(K2) .

Comparing this with the Steiner polynomial in (B.7) shows that indeed

V ej (K) =
n1∑

`=j−n2

V e` (K1) · V ej−`(K2) ,

which was to be shown. 2
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M2M2

M3M3
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Figure B.1: The decomposition of the cone stub Ke.

B.3 Euclidean vs. spherical intrinsic volumes

In this section we will give the proof of Proposition 4.4.18. Let C ⊆ Rn be a closed
convex cone, and let

Ke := C ∩Bn , K := C ∩ Sn−1 ,

where Bn denotes the n-dimensional unit ball. The statement of Proposition 4.4.18
is that the euclidean resp. the spherical intrinsic volumes of Ke and K are related
by the formula

V ej (Ke) =
n∑
`=j

(
`

j

)
· ω`
ω`−j

· V`−1(K) . (B.19)

To prove this equality, we first consider the case where C ∈ Grn,m is an m-
dimensional subspace. In this case, the set K is an (m− 1)-dimensional subsphere
of Sn−1, and Vj(K) = δj,m−1, i.e., Vm−1(K) = 1 and Vj(K) = 0 if j 6= m − 1.
Furthermore, we have (cf. Example 4.2.1) V ei (Ke) =

(
m
i

)
· ωm
ωm−i

, 0 ≤ i ≤ m, and
V ei (Ke) = 0 if i > m. This shows (B.19) in the case where C is a linear subspace.

It remains to prove (B.19) where C is convex cone, which is not a linear subspace.
Equivalently, it remains to prove the case where K = C ∩ Sn−1 is a cap. By
an approximation argument as in Section B.1 we may assume w.l.o.g. that K ∈
Ksm(Sn−1) is a smooth cap.

For the rest of this section let K ∈ Ksm(Sn−1), and let M := ∂K denote the
smooth boundary of K. Furthermore, let K◦ denote the interior of K (w.r.t. the
topology on Sn−1). The boundary of the cone stub Ke decomposes into

∂Ke = M0 ∪̇M1 ∪̇M2 ∪̇M3 ∪̇M4 ,

where

M0 := int(Ke) , M1 := K◦ , M2 := M ,

M3 := {λ · p | λ ∈ (0, 1) , p ∈M} , M4 := {0} .

See Figure B.1 for a picture of this decomposition. The dimensions of these pieces
are given by

dimM0 = n , dimM1 = n− 1 , dimM2 = n− 2 ,
dimM3 = n− 1 , dimM4 = 0 .
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The euclidean version of Weyl’s tube formula yields

volnT e(Ke, r) = voln(Ke) +
n−1∑
j=0

rn−j

n− j
·
∫

x∈M1

σ
(1)
n−1−j(x) dx

+
n−2∑
j=0

rn−j

n− j
·
∫

x∈M2

∫
η∈NSx

σ
(2)
n−2−j(x,−η) dη dx

+
n−1∑
j=0

rn−j

n− j
·
∫

x∈M3

σ
(3)
n−1−j(x) dx+

rn

n
·
∫

η∈NS0

1 dη (B.20)

The principal curvatures in M1 and M3 are given by

x ∈M1 : 1 , . . . , 1

x = λ p ∈M3 :
κ1(p)
λ

, . . . ,
κn−2(p)

λ
, 0 ,

where p ∈M , and κi(p) denotes the ith principal curvature of M at p. This follows
from the fact that M1 is an open subset of Sn−1, and M3 is an open subset of
∂C \ {0}.

As for the piece M2, the normal cone Np(Ke) for p ∈M2 is given by

Np(Ke) = R+ p+ R− ν(p) ,

where ν denotes the unit normal field on M , which points inwards the cap K. The
intersection of the normal cone with the unit sphere is thus given by

NS
p (Ke) = {sin(ρ) p− cos(ρ) ν(p) | 0 ≤ ρ ≤ π

2 } .

Note that p ∈ TpRn is the normal vector of the unit sphere. So the principal
curvatures of M2 at p in direction p are 1, . . . , 1 ((n− 2)-times). More generally, we
get that the principal curvatures of M2 at p in direction s p− c ν(p) are given by

s+ c κ1(p) , . . . , s+ c κn−2(p) .

The value of the `th elementary symmetric function in these principal curvatures is
given by

σ`(s+ c κ1(p), . . . , s+ c κn−2(p)) =
∑

i1<...<i`

(s+ c κi1(p)) · · · (s+ c κi`(p))

=
∑

i1<...<i`

∑̀
k=0

s`−k · ck · σk(κi1(p), . . . , κik(p))

=
∑̀
k=0

s`−k · ck ·
∑

i1<...<i`

σk(κi1(p), . . . , κik(p))

(∗)
=
∑̀
k=0

s`−k · ck ·
(
n− 2− k
`− k

)
· σk(κ1(p), . . . , κn−2(p)) ,

where (∗) follows from the following combinatorial argument. Consider a single sum-
mand of σk(κ1(p), . . . , κn−2(p)), which is the product of k principal curvatures with
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indices, say, j1, . . . , jk. This summand appears in
∑
i1<...<i`

σk(κi1(p), . . . , κik(p))
iff {j1, . . . , jk} ⊆ {i1, . . . , i`}. The number of choices of i1 < . . . < i` for this to
happen is given by the binomial coefficient

(
n−2−k
`−k

)
.

From (B.20) we thus get

voln T e(Ke, r) = voln(Ke) +
n−1∑
j=0

rn−j

n− j
·
(

n− 1
n− 1− j

)
· voln−1(K)

+
n−2∑
j=0

rn−j

n− j
·
∫
p∈M

∫ π
2

0

n−2−j∑
k=0

sin(ρ)n−2−j−k · cos(ρ)k ·
(

n− 2− k
n− 2− j − k

)
σk(p) dρ dp

+
n−1∑
j=1

rn−j

n− j
·
∫ 1

0

∫
p∈M

λn−2

λn−1−j · σn−1−j(p) dp dλ+
rn

n
· voln−1(K̆)

(note that changing the integration over M3 to an integration over M yields a factor
of λn−2). The volume of Ke is given by

voln(Ke) = ωn ·
voln−1(K)
On−1

= ωn · Vn−1(K) .

Furthermore, we have

1
n− j

·
(

n− 1
n− 1− j

)
· voln−1(K) =

(n− 1)! · n
(n− j) · (n− 1− j)! · j!

· On−1

n
· Vn−1(K)

=
(
n

j

)
· ωn · Vn−1(K) ,

and ∫ π
2

0

sin(ρ)n−2−j−k · cos(ρ)k dρ Cor. 4.1.19=
On−1−j

Ok · On−2−j−k
,

∫
p∈M

σk(p) dp
Prop. 4.4.4

= Ok · On−2−k · Vn−2−k(K) .

This implies

1
n− j

·
∫
p∈M

∫ π
2

0

n−2−j∑
k=0

sin(ρ)n−2−j−k · cos(ρ)k ·
(

n− 2− k
n− 2− j − k

)
σk(p) dρ dp

=
1

n− j
·
n−2−j∑
k=0

On−1−j

Ok · On−2−j−k
·
(

n− 2− k
n− 2− j − k

)
· Ok · On−2−k · Vn−2−k(K)

=
On−1−j

n− j
·
n−2−j∑
k=0

n− 1− j − k
On−2−j−k

· On−2−k

n− 1− k

· (n− 1− k) · (n− 2− k)!
(n− 1− j − k) · (n− 2− j − k)! · j!

· Vn−2−k(K)

= ωn−j ·
n−2−j∑
k=0

ωn−1−k

ωn−1−j−k
·
(
n− 1− k

j

)
· Vn−2−k(K)

[`:=n−1−k]
= ωn−j ·

n−1∑
`=j+1

ω`
ω`−j

·
(
`

j

)
· V`−1(K) .
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Additionally, we have∫
p∈M

σn−1−j(p) dp
Prop. 4.4.4

= Oj−1 · On−1−j · Vj−1(K) ,

which implies

1
n− j

·
∫ 1

0

∫
p∈M

λj−1 · σn−1−j(p) dp dλ =
On−1−j

n− j
· Oj−1

j
· ·Vj−1(K)

= ωn−j · ωj · ·Vj−1(K) .

Lastly, we have

1
n
· voln−1(K̆) =

On−1

n
· V−1(K) = ωn · V−1(K) .

Putting everything together, we get

voln T e(Ke, r) = ωn · Vn−1(K) +
n−1∑
j=0

rn−j ·
(
n

j

)
· ωn · Vn−1(K)

+
n−2∑
j=0

rn−j · ωn−j ·
n−1∑
`=j+1

ω`
ω`−j

·
(
`

j

)
· V`−1(K)

+
n−1∑
j=1

rn−jωn−j · ωj · ·Vj−1(K) + rn · ωn · V−1(K)

=
n∑
j=0

rn−j ·
(
n

j

)
· ωn · Vn−1(K)

+
n−2∑
j=0

rn−j · ωn−j ·
n−1∑
`=j+1

ω`
ω`−j

·
(
`

j

)
· V`−1(K)

+
n−1∑
j=0

rn−jωn−j · ωj · Vj−1(K) .

=
n∑
j=0

rn−j · ωn−j ·
n∑
`=j

ω`
ω`−j

·
(
`

j

)
· V`−1(K) .

Comparing this with the Steiner polynomial

voln T e(K, r) =
n∑
j=0

rn−j · ωn−j · V ej (K)

shows the equality in (B.19) and thus finishes the proof. 2



Appendix C

The semidefinite cone

In this chapter we will compute the intrinsic volumes of the cone of positive semidef-
inite matrices. We regard this computation as a first step towards a full understand-
ing of the role of the intrinsic volumes in the domain of semidefinite programming.
In Section C.3 we will formulate some observations, open questions, and conjectures
concerning the intrinsic volumes of the semidefinite cone.

C.1 Preliminary: Some integrals appearing

In this section we will try to relate the integrals that will come up in the formulas
of the intrinsic volumes of the semidefinite cone to the so-called Selberg integral
and the Mehta integral (cf. for example [28]). We will also introduce the notation
that we will use in the formulas of the intrinsic volumes of the semidefinite cone.
Selberg’s and Mehta’s integrals can be solved exactly, which we think is also possible
for the integrals from the formulas of the intrinsic volumes of the semidefinite cone.
We rely in this short account mainly on the article [28]. See this and the references
therein for more details about the Selberg and the Mehta integral.

Let the Vandermonde determinant be denoted by

∆(t) :=
∏

1≤i<j≤n

(ti − tj) ,

where t = (t1, . . . , tn). The Selberg integral is the following identity

Sn(α, β, γ) :=
∫

[0,1]n

|∆(t)|2γ ·
n∏
i=1

tα−1
i · (1− ti)β−1 dt (C.1)

=
n−1∏
j=0

Γ(α+ jγ)Γ(β + jγ)Γ(1 + (j + 1)γ)
Γ(α+ β + (n+ j − 1)γ)Γ(1 + γ)

,

which holds for complex α, β, γ satisfying

<(α) > 0
<(β) > 0

<(γ) > −min
{

1
n
,
<(α)
n− 1

,
<(β)
n− 1

}
.
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The Mehta integral is given by the identity

Mn(γ) :=
∫
Rn

e−
‖z‖2

2 · |∆(z)|2γ dz = (2π)
n
2 ·

n∏
j=1

Γ(1 + jγ)
Γ(1 + γ)

,

where <(γ) > − 1
n , and it can be derived from the Selberg integral via (cf. [28])

lim
L→∞

(2L)n+n(n−1)γ · 2n·L
2
· Sn

(
L2

2 + 1, L
2

2 + 1, γ
)

= (2π)
n
2 ·Mn(γ) .

Setting the parameter γ := 1
2 , and restricting the integration to the positive

orthant, we define

M+
n :=

∫
Rn+

e−
‖z‖2

2 · |∆(z)| dz . (C.2)

A random matrix A ∈ Symn = {B ∈ Rn×n | BT = B} is said to be from the
Gaussian orthogonal ensemble, A ∈ GOE(n), iff the entries aij are chosen in the
following way:

• For 1 ≤ i ≤ n the entries aii are i.i.d. standard normal distributed,

• for 1 ≤ i < j ≤ n the entries aij are i.i.d. normal distributed with mean 0 and
variance 1

2 ,

• for 1 ≤ j < i ≤ n the entry aij is set to aij := aji.

The probability that a random matrix from the nth Gaussian orthogonal ensemble
is positive definite is given by (cf. for example [22])

Prob
A∈GOE(n)

[A is positive definite] =
1

n! · 2n/2 ·
∏n
d=1 Γ(d2 )

·M+
n . (C.3)

For n = 1, 2, 3 this probability and also its asymptotics for n → ∞ are known
(cf. [22]). We have

M+
1 =

√
π

2

M+
2 =

√
π · (2−

√
2)

M+
3 =

3π√
2
− 6

M+
n ∼ n! · 2n/2 ·

n∏
d=1

Γ(d2 ) · exp
(
− n2 · ln 3

4

)
, for n→∞ .

Knowing an exact expression for M+
n , though maybe not too exciting on its own,

might serve as a building block for understanding the type of integrals that we will
describe next.

For 0 ≤ r ≤ n the Vandermonde determinant may be decomposed in the follow-
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ing way

∆(z) =
∏

1≤i<j≤n

(zi − zj)

=

( ∏
1≤i<j≤r

(zi − zj)

)
·

( ∏
r+1≤i<j≤n

(zi − zj)

)
·

(
r∏
i=1

n∏
j=r+1

(zi − zj)

)

(∗)
= ∆(x) ·∆(y) ·

r·(n−r)∑
`=0

(−1)` · σ`(x−1 ⊗ y) ·
r∏
i=1

xn−ri

where x := (z1, . . . , zr), y := (zr+1, . . . , zn), σ` denotes the `th elementary symmet-
ric function, and

x−1 ⊗ y :=
(
y1

x1
, . . . ,

y1

xr
,
y2

x1
, . . . ,

y2

xr
, . . . ,

yn−r
x1

, . . . ,
yn−r
xr

)
∈ Rr·(n−r) .

The last equality (∗) is seen in the following way:

r∏
i=1

n∏
j=r+1

(zi − zj) =
∑

S=(sij)∈{0,1}r×(n−r)

r∏
i=1

n−r∏
j=1

(
xi if sij = 0
−yj if sij = 1

)

=
r(n−r)∑
`=0

(−1)` ·
∑

S∈{0,1}r×(n−r)P
sij=`

r∏
i=1

n−r∏
j=1

(
xi if sij = 0
yj if sij = 1

)

=
r(n−r)∑
`=0

(−1)` · σ`(x−1 ⊗ y) ·
r∏
i=1

xn−ri .

So if we define

∆r,`(z) := ∆(x) ·∆(y) · σ`(x−1 ⊗ y) ·
r∏
i=1

xn−ri , (C.4)

then we have

∆(z) =
r·(n−r)∑
`=0

(−1)` ·∆r,`(z) . (C.5)

Analogous to (C.2) we define for 0 ≤ r ≤ n and 0 ≤ ` ≤ r(n− r)

J(n, r, `) :=
∫
z∈Rn+

e−
‖z‖2

2 · |∆r,`(z)| dz . (C.6)

Note that we get J(n, 0, 0) = J(n, n, 0) = M+
n .

Abbreviating `∗ := r(n− r)− ` we have

∆n−r,`∗(y, x) = ∆n−r(y) ·∆r(x) · σ`∗(y−1 ⊗ x) ·
n−r∏
j=1

yrj

= ∆r(x) ·∆n−r(y) · σ`(x−1 ⊗ y) ·
r∏
i=1

xn−ri = ∆r,`(x, y) .
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r = 0 r = 1

` = 0
√

π
2

√
π
2

(a) n = 1

r = 0 r = 1 r = 2

` = 0
√
π · (2−

√
2)

√
π
2

√
π · (2−

√
2)

` = 1 −
√

π
2 −

(b) n = 2

r = 0 r = 1 r = 2 r = 3

` = 0 3π√
2
− 6 π(

√
2− 1) π(1− 1√

2
) 3π√

2
− 6

` = 1 − 2 2 −

` = 2 − π(1− 1√
2
) π(

√
2− 1) −

(c) n = 3

Table C.1: The values of J(n, r, `) for n = 1, 2, 3.

This implies the identity

J(n, r, `) = J(n, n− r, r(n− r)− `) . (C.7)

Furthermore, we will show in Section C.2 (cf. Remark C.2.1) the relation

n∑
r=0

(
n

r

)
·
r(n−r)∑
`=0

J(n, r, `) = n! · 2n2 ·
n∏
d=1

Γ
(
d
2

)
. (C.8)

Table C.1 shows the values of J(n, r, `) for n = 1, 2, 3. These are easily computed
by hand or with a computer algebra system. Although for higher dimensions the
standard algorithms in a computer algebra system will not yield a good result, one
can still approximate the value of the integrals by a Monte-Carlo method. The
results of a Monte-Carlo approximation of J(n, r, `), n = 4, 5, 6, with 107 samples
are shown in Table C.2.

C.2 The intrinsic volumes of the semidefinite cone

In this section we will derive the formulas for the intrinsic volumes of the semidefinite
cone that we already stated in Proposition 4.4.21. Recall that the semidefinite
cone is defined in Symn = {A ∈ Rn×n | AT = A}, which is a linear subspace of
Rn×n of dimension n(n+1)

2 =: t(n). An orthogonal basis for Symn is given by Bij ,
1 ≤ i ≤ j ≤ n,

Bij :=

{
Eii if i = j

Eij + Eji if i 6= j,
(C.9)

where Eij denotes as usual the (i, j)th elementary matrix. Note that ‖Bij‖F =
√

2
for i 6= j. We denote the positive semidefinite cone and its intersection with the
unit sphere S(Symn) by

Symn
+ = {A ∈ Symn | A is pos. semidef.} resp. Kn = Symn

+ ∩S(Symn) .
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r = 0 r = 1 r = 2 r = 3 r = 4

` = 0 0.370 1.328 1.237 0.572 0.371

` = 1 − 2.758 3.995 2.006 −
` = 2 − 2.004 5.654 2.761 −
` = 3 − 0.571 4.004 1.328 −
` = 4 − − 1.237 − −

(a) n = 4

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5

` = 0 0.20 1.39 2.02 1.03 0.34 0.20

` = 1 − 3.65 8.83 5.24 1.68 −
` = 2 − 3.63 16.87 12.82 3.61 −
` = 3 − 1.66 18.75 18.68 3.67 −
` = 4 − 0.34 12.88 16.81 1.39 −
` = 5 − − 5.26 8.80 − −
` = 6 − − 1.03 2.04 − −

(b) n = 5

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

` = 0 0.11 1.55 4.15 2.85 0.83 0.20 0.11

` = 1 − 4.96 21.35 18.33 6.07 1.31 −
` = 2 − 6.31 52.95 60.42 21.00 3.95 −
` = 3 − 4.12 77.03 118.06 46.62 6.40 −
` = 4 − 1.31 73.62 164.72 72.22 5.03 −
` = 5 − 0.21 48.28 165.04 79.12 1.64 −
` = 6 − − 21.68 121.68 52.71 − −
` = 7 − − 5.79 59.52 21.55 − −
` = 8 − − 0.86 18.22 4.03 − −
` = 9 − − − 2.74 − − −

(c) n = 6

Table C.2: The values of J(n, r, `) for n = 4, 5, 6, approximated by a Monte-Carlo
method with 107 samples.
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We will show that the kth intrinsic volume of Kn, −1 ≤ k ≤ t(n)− 1 = n(n+1)
2 − 1,

is given by

Vk(Kn) =
1

n! · 2n2 ·
∏n
d=1 Γ(d2 )

·
n∑
r=0

(
n

r

)
· J(n, r, k + 1− t(n− r)) ,

where J(n, r, `) is defined as in (C.6) for 0 ≤ ` ≤ r(n− r) = t(n)− t(r)− t(n− r),
resp. J(n, r, `) := 0 for the remaining cases. In particular, we have (cf. (C.3); cf. also
Remark 4.4.22)

V−1(Kn) = Vt(n)−1(Kn) =
1

n! · 2n2 ·
∏n
d=1 Γ(d2 )

·
∫
z∈Rn+

e−
‖z‖2

2 · |∆(z)| dz .

Note that the condition J(n, r, k+1− t(n−r)) > 0 can be rewritten as two inequal-
ities

J(n, r, k + 1− t(n− r)) > 0

⇐⇒

(
k + 1 ≥ t(n− r) ,
k + 1 ≤ r(n− r) + t(n− r) = t(n)− t(r)

)
. (C.10)

Remark C.2.1. 1. Recall that the intrinsic volumes form a discrete probability
distribution (cf. Proposition 4.4.10), so that in particular

∑t(n)−1
k=−1 Vk(Kn) = 1.

It is easily seen that in this sum every integral J(n, r, `), 0 ≤ ` ≤ r(n − r),
appears exactly once, so that we get

1 =
t(n)−1∑
k=−1

Vk(Kn) =
1

n! · 2n2 ·
∏n
d=1 Γ(d2 )

·
n∑
r=0

(
n

r

)
·
r(n−r)∑
`=0

J(n, r, `) .

This shows the relation (C.8) of the integrals J(n, r, `).

2. Note that the self-duality of the semidefinite cone implies

Vk(Kn) = Vt(n)−2−k(K) .

(cf. Proposition 4.4.10). This equality is verified easily using the relation (C.7),
i.e., using J(n, r, `) = J(n, n− r, r(n− r)− `).

Using the (approximated) values of J(n, r, `) in Table C.1 and Table C.2 we
may compute the intrinsic volumes of Kn for n = 1, . . . , 6. The result is shown in
Figure 4.2 in Section 4.4.1.

The following proposition gives a full description of the boundary structure of
the semidefinite cone. Recall from Definition 3.1.7 that a face of a closed convex set
is the intersection of the convex set with a supporting hyperplane.

Proposition C.2.2. The faces of Symn
+ are parametrized by the subspaces of Rn.

More precisely, for L ∈ Grn,r the set {A ∈ Symn
+ | im(A) ⊆ L} is a face of Symn

+ of
dimension t(r) = r(r+1)

2 . On the other hand, every face of Symn
+ has dimension t(r)

for some 0 ≤ r ≤ n and is of the above form. Moreover, every face of Symn
+ is of

the form {
Q

(
A′ 0
0 0

)
QT
∣∣∣∣A′ ∈ Symr

+

}
, (C.11)
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where Q ∈ O(n) and 0 ≤ r ≤ n. The normal cone at the face defined in (C.11) is
given by {

Q

(
0 0
0 −A′′

)
QT
∣∣∣∣A′′ ∈ Symn−r

+

}
. (C.12)

Proof. See for example [4, II.12] or [41]. 2

Note that (C.11) and (C.12) show that when analyzing a face of Symn
+, by choos-

ing an appropriate basis of Rn we may assume without loss of generality that this
face is of the form Symr

+×{0} with corresponding normal cone {0} × (−Symn−r
+ ).

Next, we will describe the stratified structure of the semidefinite cone. Before
we can do this, we need to prepare some notation. Let us define the eigenvalue
map Eig, that maps each nonzero positive semidefinite matrix onto the ordered
vector of its nonzero eigenvalues, i.e.,

Eig : Symn
+ \{0} 3 A 7→ (λ1, . . . , λr) ,

if λ1 ≥ . . . ≥ λr > 0 are the positive eigenvalues of A. We will need to distinguish
the matrices according to their eigenvalue patterns. Therefore, we introduce the
notation

(ρ1, . . . , ρm) � r :⇐⇒ ρ1, . . . , ρm ∈ Z>0 , ρ1 + . . .+ ρm = r .

Furthermore, we define the eigenvalue pattern of a (nonzero) positive semidefinite
matrix A via

patt(A) := (ρ1, . . . , ρm) , iff λ1 = . . . = λρ1 > λρ1+1 = . . . = λρ1+ρ2 > . . . ,

where (λ1, . . . , λr) = Eig(A). Note that in the above notation we have

patt(A) � rk(A) = ρ1 + . . .+ ρm .

Using this notation, Kn decomposes into

Kn =
⋃̇n

r=1

⋃̇
ρ�r

Mn,ρ , (C.13)

with
Mn,ρ := {A ∈ Kn | patt(A) = ρ} . (C.14)

Note that int(Kn) =
⋃̇
ρ�nMn,ρ and ∂Kn =

⋃̇n−1

r=1

⋃̇
ρ�rMn,ρ.

In the following proposition we will show that the semidefinite cap Kn satisfies
all conditions of a stratified convex cap (cf. Definition 3.3.9). Moreover, we will
show that the decomposition in (C.13) is a valid stratification of Kn, and we will
determine the essential and the negligible pieces in this decomposition.

Proposition C.2.3. The set Mn,ρ, ρ � r ≤ n, defined in (C.14) is a smooth
submanifold of the unit sphere S(Symn). Furthermore, the spherical duality bundle
NSMn,ρ (cf. (3.9)) is a smooth manifold for all ρ � n. In particular, Kn is a
stratified convex set.

The pieces {Mn,1(r) | 1 ≤ r ≤ n}, where 1(r) := (1, 1, . . . , 1) � r, are essential
and all the other pieces Mn,ρ are negligible.
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Proof. Let ρ = (ρ1, . . . , ρm) � r ≤ n. We define the set Pn,ρ ⊂ Sn−1 via

Pn,ρ :=
{
λ ∈ Sn−1

∣∣∣∣ λ1 = . . . = λρ1 > λρ1+1 = . . . = λρ1+ρ2 > . . .
. . . λr > λr+1 = . . . = λn = 0

}
. (C.15)

It is easily seen that the set Pn,ρ is a (m − 1)-dimensional submanifold of Sn−1

(there are m degrees of freedom for the values of the blocks of λ; minus 1 degree of
freedom because of the restriction λ ∈ Sn−1).

Furthermore, we define the subgroup O(n, ρ) of O(n) via

O(n, ρ) :=


Q1

. . .
Qm

Q′

∣∣∣∣∣∣Qi ∈ O(ρi), Q′ ∈ O(n− r)


∼= O(ρ1)× . . .×O(ρm)×O(n− r) .

From Section 5.3 we know that the homogeneous space O(n)/O(n, ρ) is a smooth
manifold of dimension

dimO(n)/O(n, ρ) = dimO(n)−
m∑
i=1

dimO(ρi)− dimO(n− r)

= t(n− 1)−
m∑
i=1

t(ρi − 1)− t(n− r − 1) .

We now consider the map

ψn,ρ : Pn,ρ ×O(n)→Mn,ρ , (λ,Q) 7→ Q · diag(λ) ·QT . (C.16)

This map is clearly smooth and surjective. Concerning the fiber of A ∈ Mn,ρ, we
may assume w.l.o.g. that A = diag(µ). Note that we have

Q · diag(λ) ·QT = diag(µ) ⇐⇒ λ = µ and Q · diag(λ) = diag(λ) ·Q .

Furthermore, it is easily checked that for λ ∈ Pn,ρ we have

Q · diag(λ) = diag(λ) ·Q ⇐⇒ Q ∈ O(n, ρ) .

We may thus conclude that

ψn,ρ(λ,Q) = A ⇐⇒ λ = µ and Q ∈ O(n, ρ) . (C.17)

This implies that the map ψn,ρ factorizes over the product Pn,ρ×O(n)/O(n, ρ), i.e.,
we have a commutative diagram

Pn,ρ ×O(n)

Pn,ρ ×O(n)/O(n, ρ) Mn,ρ

ψn,ρ
Π

ψn,ρ

, (C.18)

where Π: Pn,ρ×O(n)→ Pn,ρ×O(n)/O(n, ρ) denotes the canonical projection map.
Moreover, (C.17) implies that the map ψn,ρ is a bijection. Using Lemma 5.3.2 it is
straightforward to show that the differential of ψn,ρ also has full rank, i.e., ψn,ρ is
an immersion, and thus ψn,ρ is a diffeomorphism. The compactness of the domain
Pn,ρ ×O(n)/O(n, ρ) ensures that Mn,ρ is indeed a submanifold of S(Symn).
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As for the claim about the duality bundle, note that for A = Q · diag(λ) · QT ,
λ ∈ Pn,ρ, the normal cone NA(Kn) is given by (cf. Proposition C.2.2)

NA(Kn) =
{
Q

(
0 0
0 −A′′

)
QT
∣∣∣∣A′′ ∈ Symn−r

+

}
.

Using the notation
K◦n−r := int(Kn−r) ,

where the interior is of course taken with respect to the topology on S(Symn−r),
we can define the map

Ψn,ρ : Pn,ρ ×O(n)×K◦n−r → NSMn,ρ ,

(λ,Q,A′′) 7→
(
ψ(λ,Q) , Q

(
0 0
0 −A′′

)
QT
)
.

This map is smooth and surjective. As in (C.18), the map Ψn,ρ factorizes over
Pn,ρ ×O(n)/O(n, ρ)×K◦n−r, and thus yields a diffeomorphism

Ψn,ρ : Pn,ρ ×O(n)/O(n, ρ)×K◦n−r → NSMn,ρ .

In particular, NSMn,ρ is a smooth manifold of dimension

dimNSMn,ρ = dim(Pn,ρ ×O(n)/O(n, ρ)×K◦n−r)

= (m− 1) +

(
t(n− 1)−

m∑
i=1

t(ρi − 1)− t(n− r − 1)

)
+ (t(n− r)− 1) .

Note that we have

t(n− 1)− t(n− r − 1) + t(n− r)− 1 = t(n)− 1− r ,

and

m− 1−
m∑
i=1

t(ρi − 1)

{
= r − 1 if ρ = 1(r)

< r − 1 else .

Therefore, we have

dimNSMn,ρ

{
= t(n)− 2 if ρ = 1(r)

< t(n)− 2 else ,

i.e., the pieces Mn,1(r) , 1 ≤ r ≤ n, are essential, and all other pieces are negligible.
2

From now on we may restrict the computations to the essential pieces Mn,1(r) .
We furthermore use the notation

Pr := Pr,1(r) =
{
λ ∈ Sr−1 | λ1 > λ2 > . . . > λr > 0

}
. (C.19)

Note that we have a natural bijection between Pr and Pn,1(r) given by

En,r : Pr → Pn,1(r) , λ 7→ (λ, 0, . . . , 0︸ ︷︷ ︸
n−r

) , (C.20)

which is easily seen to be an isometry.
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The subgroup O(n, ρ) for ρ = 1(r) is given by

O(n, 1(r)) = {±1} × . . .× {±1}︸ ︷︷ ︸
r times

×O(n− r) . (C.21)

In the following proposition we will replace the map ψn,1(r) , which parametrizes
Mn,1(r) via O(n)/O(n, 1(r)), by a map ϕn,r, which parametrizes Mn,1(r) via Stn,r =
O(n)/O(n− r). The advantage is that we have already discussed the homogeneous
space Stn,r in Section 5.3.1.

Proposition C.2.4. Let 1 ≤ r ≤ n, and let ϕn,r be defined via

ϕn,r : Pr × Stn,r →Mn,1(r) , (λ, [Q]) 7→ Q · diag(En,r(λ)) ·QT ,

where Pr is defined as in (C.19), and En,r is defined as in (C.20). The map ϕn,r
is a 2r-fold smooth covering, i.e., ϕn,r is a local diffeomorphism, and for every A ∈
Mn,1(r) we have |ϕ−1

n,r(A)| = 2r. The Normal Jacobian of ϕn,r at (λ, [Q]) ∈ Pr×Stn,r
is given by

ndet(D(λ,[Q])ϕn,r) = 2r(n−r)/2+r(r−1)/4 ·
r∏
i=1

λn−ri ·∆(λ) ,

where ∆(λ) =
∏

1≤i<j≤r(λi − λj) denotes the Vandermonde determinant.

Proof. From (C.21) it is easily seen that we have a canonical projection map

Πr : Stn,r → O(n)/O(n, 1(r)) ,

which, for Q ∈ O(n), maps the coset of Q in Stn,r = O(n)/O(n − r) to the coset
of Q in O(n)/O(n, 1(r)). Roughly speaking, a tuple of orthonormal vectors maps
to the tuple of the corresponding directions. So the projection map Πr is in fact a
2r-fold covering. Now, we can write the map ϕn,r in the form

ϕn,r = ψn,1(r) ◦ (En,r,Πr) ,

where ψn,1(r) is defined as in (C.18). As ψn,1(r) is a diffeomorphism, it follows that
ϕn,r is a 2r-fold covering.

Concerning the differentialD(λ,[Q])ϕn,r note that w.l.o.g. we may assumeQ = In.
For ζ ∈ TλPr we have

D(λ,[In])ϕn,r(ζ, 0) = diag(ζ) . (C.22)

As for the second component, recall from Section 5.3.1 that for Skewn we have an
orthonormal basis given by

{Eij − Eji | 1 ≤ j < i ≤ r} ∪ {Eij − Eji | r + 1 ≤ i ≤ n , 1 ≤ j ≤ r} ,

where Eij denotes the (i, j)th elementary matrix. Let ηij denote the corresponding
tangent vector in T[In] Stn,r, i.e.,

ηij := [In , Eij − Eji] ∈ T[In] Stn,r , (C.23)

where either 1 ≤ j < i ≤ r, or r + 1 ≤ i ≤ n and 1 ≤ j ≤ r. Furthermore, let
Uij : R→ O(n) be a curve such that the induced curve in Stn,r, t 7→ [Uij(t)], defines
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the direction ηij , i.e., d
dt [Uij(t)](0) = ηij . Then we may compute the derivative of

ϕn,r in the second component via

D(λ,[In])(0, ηij) = d
dt

(
Uij(t) · diag(λ, 0, . . . , 0) · Uij(t)T

)
(0)

=
(
d
dtUij(0)︸ ︷︷ ︸
Eij−Eji

)
· diag(λ, 0, . . . , 0) + diag(λ, 0, . . . , 0) ·

(
d
dtUij(t)

T (0)︸ ︷︷ ︸
Eji−Eij

)

=

{
(λj − λi) · (Eij + Eji) if 1 ≤ j < i ≤ r
λj · (Eij + Eji) if r + 1 ≤ i ≤ n, 1 ≤ j ≤ r .

(C.24)

Note that the direction ηij has length 1, while the direction Eij+Eji has length
√

2.
Taking this into account, we get from (C.22) and (C.24) that

ndet(D(λ,[Q])ϕn,r) =
∏

1≤j<i≤r

(
√

2 · (λj − λi)) ·
∏

r+1≤i≤n
1≤j≤r

(
√

2 · λj)

=
√

2
r(r−1)/2

·
∏

1≤j<i≤r

(λj − λi) ·
√

2
(n−r)r

·
∏

1≤j≤r

λn−rj . 2

Remark C.2.5. The map ϕn,r has the important property of O(n)-equivariance,
by which we mean the following. The domain Pr × Stn,r can be endowed with an
O(n)-action via Q̃ • (λ, [Q]) := (λ, [Q̃Q]), and the codomain Mn,1(r) ⊂ S(Symn) is
endowed with an O(n)-action via conjugation, i.e., Q̃ • A := Q̃ · A · Q̃T . Then ϕn,r
satisfies for all (λ, [Q]) ∈ Pr × Stn,r and all Q̃ ∈ O(n) the equivariance property
ϕn,r(Q̃ • (λ, [Q])) = Q̃ • ϕn,r(λ, [Q]).

It remains to compute the principal curvatures of the essential pieces Mn,1(r)

before we can use Theorem 4.3.2 to compute the intrinsic volumes of Kn. We will
do this in the following lemma. Recall from the proof of Proposition C.2.3 that the
dimension of Mn,1(r) is given by

dimMn,1(r) = r − 1 + t(n− 1)− t(n− r − 1)

= r(n− r) + t(r)− 1 .

Lemma C.2.6. Let A = Q · diag(λ, 0, . . . , 0) · QT ∈ Mn,1(r) , where λ ∈ Pr. Fur-

thermore, let A′′ ∈ Symn−r
+ , so that B := Q ·

(
0 0
0 −A′′

)
·QT ∈ NA(Kn) is a vector

in the normal cone of Kn in A. If µ1 ≥ . . . ≥ µn−r ≥ 0 denote the eigenvalues of
A′′, then the principal curvatures of Mn,1(r) at A in direction −B are given by

µ1

λ1
, . . . ,

µn−r
λ1

,
µ1

λ2
, . . . ,

µn−r
λ2

, . . . ,
µ1

λr
, . . . ,

µn−r
λr

, 0, . . . , 0︸ ︷︷ ︸
t(r)−1

.

Proof. Using the O(n)-equivariance property of ϕn,r (cf. Remark C.2.5) we may
assume w.l.o.g. that A = diag(λ), and A′′ = diag(µ1, . . . , µn−r). From Proposi-
tion C.2.4 we get that the tangent space of Mn,1(r) at A is given by

TAMn,1(r) = Dϕn,r(TλPr × T[In] Stn,r) .

It is easily seen that all the vectors in Dϕn,r(TλPr × {0}) are principal directions
with principal curvature 0, thus giving r− 1 of the claimed t(r)− 1 zero curvatures.



192 The semidefinite cone

As for the second component, let as in the proof of Proposition C.2.4 Uij(t) ∈
O(n) be a curve such that the corresponding curve [Uij(t)] in Stn,r defines the
direction ηij ∈ T[In] Stn,r (cf. (C.23)). The corresponding curve

t 7→ ϕn,r(λ, [Uij(t)]) = Uij(t) · diag(λ, 0, . . . , 0) · Uij(t)T

defines the image D(λ,[In])(0, ηij) (cf. (C.24)). Moreover, we may define a normal
extension of −B = diag(0, . . . , 0, µ1, . . . , µn−r) along this curve via

v(t) := Uij(t) · diag(0, . . . , 0, µ1, . . . , µn−r) · Uij(t)T .

Differentiating this normal extension yields
d
dtv(0) = (Eij − Eji) · diag(0, µ) + diag(0, µ) · (Eji − Eij)

=

{
0 if 1 ≤ j < i ≤ r
−µi−r · (Eij + Eji) if r + 1 ≤ i ≤ n, 1 ≤ j ≤ r .

Comparing this with the values of D(λ,[In])(0, ηij) in (C.24) yields

d
dtv(0) =

{
0 ·D(λ,[In])(0, ηij) if 1 ≤ j < i ≤ r
−µi−rλj

·D(λ,[In])(0, ηij) if r + 1 ≤ i ≤ n, 1 ≤ j ≤ r .

We may conclude that the direction D(λ,[In])(0, ηij) is a principal direction with

curvature 0 resp. −
(
−µi−rλj

)
= µi−r

λj
(cf. Section 4.1.1). The final computation

t(r− 1) + r− 1 = t(r)− 1 shows that indeed t(r)− 1 principal curvatures of Mn,1(r)

are 0, which finishes the proof. 2

Before we give the proof of Proposition 4.4.21, we state another small lemma,
that will come in handy for an integral conversion, that we will have to make.

Lemma C.2.7. Let f : Rn \ {0} → R be a homogeneous function of degree d,
i.e., f(x) = ‖x‖d · f(‖x‖−1 · x). Then for U ⊂ Sn−1 a Borel set∫

p∈U

f(p) dp =
1

2
n+d

2 −1 · Γ(n+d
2 )
·
∫
x∈Û

e−
‖x‖2

2 · f(x) dx ,

where Û = {s · p | s > 0 , p ∈ U}.
Proof. The normal Jacobian of the projection Π: Rn\{0} → Sn−1, Π(x) = ‖x‖−1·x,
is given by ndet(DxΠ) = ‖x‖−(n−1). From the coarea formula in Lemma 4.1.15 we
thus get ∫

x∈Û

e−
‖x‖2

2 · f(x) dx =
∫
p∈U

∫ ∞
0

sn−1 · e−s
2/2 · f(s · p) ds dp

=
∫
p∈U

f(p) dp ·
∫ ∞

0

sn−1+d · e−s
2/2 ds .

Substituting t := s2/2, and using the well-known formula
∫∞

0
tz−1 · e−t dt = Γ(z),

we finally get∫ ∞
0

sn−1+d · e−s
2/2 ds =

∫ ∞
0

√
2t
n−1+d

· e−t · 1√
2t
dt

= 2
n+d

2 −1 ·
∫ ∞

0

t
n+d

2 −1 · e−t dt = 2
n+d

2 −1 · Γ(n+d
2 ) . 2
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Proof of Proposition 4.4.21. We use the notation

d(n, r) := dimMn,1(r) = r(n− r) + t(r)− 1

= t(n)− t(n− r)− 1 .

From Proposition 4.4.4 and Proposition C.2.6 we get for 0 ≤ k ≤ t(n)− 2

Vk(Kn) =
1

Ok · Ot(n)−2−k
·
n−1∑
r=1

∫
A∈M

n,1(r)

∫
B∈NSA

σ
(r)
d(n,r)−k(A,B) dNS

A dMn,1(r) ,

where σ(r)
d(n,r)−k shall denote the dependence on Mn,1(r) . From Lemma C.2.6 we

know the principal curvatures of Mn,1(r) . Note that the `th elementary symmetric
function in these principal curvatures is given by σ`(µ ⊗ λ−1). Using the coarea
formula (cf. Lemma 4.1.15) and Proposition C.2.4 we can transform the integral
over Mn,1(r) to an integral over Pr × Stn,r. Similarly, we can transform the integral
over NS

A to an integral over Pn−r ×O(n− r), as Stn−r,n−r = O(n− r). This yields∫
A∈M

n,1(r)

∫
B∈NSA

σ
(r)
d(n,r)−k(A,B) dNS

A dMn,1(r)

=
1
2r
·

∫
Pr×Stn,r

1
2n−r

·
∫

Pn−r×O(n−r)

2r(n−r)/2+r(r−1)/4 ·
r∏
i=1

λn−ri ·∆(λ)

· 2
(n−r)(n−r−1)

4 ·∆(µ) · σd(n,r)−k(µ⊗ λ−1) d(λ, [Q1]) d(µ, [Q2])

= 2
n(n−1)

4 −n · vol Stn,r · volO(n− r) ·
∫
Pr

∫
Pn−r

∆(λ) ·∆(µ) ·
r∏
i=1

λn−ri

· σd(n,r)−k(µ⊗ λ−1) dλ dµ

(∗)
=

2
n(n−1)

4 · π
t(n)
2∏n

d=1 Γ(d2 )
·
∫
Pr

∫
Pn−r

∆(λ) ·∆(µ) ·
r∏
i=1

λn−ri · σd(n,r)−k(µ⊗ λ−1)︸ ︷︷ ︸
=:f(λ,µ)

dλ dµ ,

where (∗) follows from (cf. Proposition 5.2.1 and (5.19))

vol Stn,r · volO(n− r) = volO(n) =
2n · π n

2+n
4∏n

d=1 Γ(d2 )
.

Note that the integrand f(λ, µ) coincides with the function (cf. (C.4))

f(λ, µ) = ∆r,d(n,r)−k(λ, µ) .

Note also that the integrand f(λ, µ) is homogeneous in λ of degree

r(n− r) +
r(r − 1)

2
− d(n, r) + k = k + 1− r .

Furthermore, it is homogeneous in µ of degree

(n− r)(n− r − 1)
2

+ d(n, r)− k =
n(n− 1)

2
+ r − (k + 1) .
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Using Lemma C.2.7 twice we get∫
Pr

∫
Pn−r

f(λ, µ) dλ dµ =
1

2
k−1
2 · Γ(k+1

2 )
· 1

2
n(n+1)

4 − k+3
2 · Γ(n(n+1)

4 − k+1
2 )

·
∫
P̂r

∫
P̂n−r

e−
‖x‖2+‖y‖2

2 · f(x, y) dy dx .

We may simplify the constant to

1

2
k−1
2 · Γ(k+1

2 )
· 1

2
n(n+1)

4 − k+3
2 · Γ(n(n+1)

4 − k+1
2 )

=
1

2
n(n+1)

4

· 2
Γ(k+1

2 )
· 2

Γ(n(n+1)
4 − k+1

2 )

(4.13)
=

1

2
n(n+1)

4

·
Ok · Ot(n)−2−k

π
n(n+1)

4

.

All in all, we get for 0 ≤ k ≤ t(n)− 2

Vk(Kn) =
1

2
n
2 ·
∏n−1
d=1 Γ(d2 )

·
n−1∑
r=1

∫
P̂r

∫
P̂n−r

e−
‖(x,y)‖2

2 · f(x, y) dx dy . (C.25)

It is easily seen that if x̃ ∈ Rr is obtained from x by permuting the entries of x, and
if the same holds for ỹ ∈ Rn−r and y, then we have

|f(x̃, ỹ)| = |f(x, y)| .

Note that f(x, y) > 0 for x ∈ Pr and y ∈ Pn−r. Using this, we can rewrite the
integral (C.25) via∫
P̂r

∫
P̂n−r

e−
‖(x,y)‖2

2 · f(x, y) dx dy =
1
r!
·
∫
Rr+

1
(n− r)!

·
∫

Rn−r+

e−
‖(x,y)‖2

2 · |f(x, y)| dx dy

=
1

r! · (n− r)!
·
∫
z∈Rn+

e−
‖z‖2

2 · |∆r,d(n,r)−k(z)| dz

(C.6)
=

1
r! · (n− r)!

· J(n, r, t(n)− t(n− r)− 1− k) .

So from (C.25) we finally get for 0 ≤ k ≤ t(n)− 2

Vk(Kn) =
1

n! · 2n2 ·
∏n
d=1 Γ(d2 )

·
n−1∑
r=1

(
n

r

)
· J(n, r, t(n)− t(n− r)− 1− k)

[s:=n−r]
=

1
n! · 2n2 ·

∏n
d=1 Γ(d2 )

·
n−1∑
s=1

(
n

s

)
· J(n, n− s, t(n)− t(s)− (k + 1))

(C.7)
=

1
n! · 2n2 ·

∏n
d=1 Γ(d2 )

·
n−1∑
s=1

(
n

s

)
· J(n, s, k + 1− t(n− s))

(∗)
=

1
n! · 2n2 ·

∏n
d=1 Γ(d2 )

·
n∑
s=0

(
n

s

)
· J(n, s, k + 1− t(n− s)) ,
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where (∗) follows from J(n, 0, k+ 1− t(n)) 6= 0 ⇒ k+ 1− t(n) = 0, and J(n, n, k+
1) 6= 0 ⇒ k + 1 = 0. The intrinsic volumes Vt(n)−1(Kn) = V−1(Kn) are given
by the relative volume of Kn, which equals the relative volume of Mn,1(n) . This is
computed as above in an analogous and simpler manner (setting r = n). We skip
the details of this last computation. 2

C.3 Observations, open questions, conjectures

In this section we will formulate some open questions about the intrinsic volumes
of the semidefinite cone.

We begin with a specialization of Conjecture 4.4.16, which seems the more plau-
sible after a look at Figure 4.3 in Section 4.4.1.

Conjecture C.3.1. The intrinsic volumes of the semidefinite cone form a log-
concave sequence, i.e., for n ≥ 1 we have

Vk(Kn)2 ≥ Vk−1(Kn) · Vk+1(Kn) , for all 0 ≤ k ≤ t(n)− 2 .

The following question is motivated from the admittedly few exact values of
J(n, r, `) that we know (cf. Table C.1).

Question C.3.2. Is there a closed formula (for example in terms of the Γ-function)
for the integrals J(n, r, `)?

Closely related, but probably easier to answer is the following question.

Question C.3.3. What are the orders of magnitude of the intrinsic volumes of the
semidefinite cone?

Inspired by the motivational experiment in [40, Sec. 3] we formulate the next con-
jecture for the traditional (SDP) problem, which consists of minimizing/maximizing
a linear functional over the intersection of the semidefinite cone with an affine m-
dimensional subspace. Let a random (SDP)-instance be given in the following way:

• The linear functional, which is to be minimized/maximized is defined by a
uniformly random point in S(Symn);

• the affine subspace, which is to be intersected with the semidefinite cone, is
given by a uniformly random linear subspace of dimension m, and a uniformly
random direction from S(Symn).

It is known that the rank r of the optimal solution of an (SDP) problem satisfies
with probability 1 the inequalities

t(n− r) ≤ m ≤ t(n)− t(r) (C.26)

(cf. [41, Cor. 3.3.4]; cf. also [40, Sec. 3]). It is remarkable, that these inequalities
coincide with the inequalities (C.10) for the summands of the intrinsic volumes, if
we substitute m = k + 1. Supported by this observation, but mainly motivated by
the geometric picture resulting from the computation in Section C.2 we formulate
the following conjecture.

Conjecture C.3.4. Let 0 ≤ r ≤ n such that the inequalities (C.26) are satisfied.
The probability, that the rank of the optimal solution of a random (SDP) instance
(in the sense described above) is r, can be given in terms of the integrals J(n, r, `).
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In the paper [40] the authors analyzed the algebraic degree of semidefinite pro-
gramming. Avoiding the definition of this notion of degree, we make the following
observation. The algebraic degree attributes to each r, which satisfies the inequali-
ties (C.26) a positive integer. Using the table of the algebraic degree in [40, Table 2]
we may compute the ratios of the algebraic degrees, where r runs over the interval
determined by (C.26). The result is shown in Table C.3.

Also the summands of the intrinsic volume Vk(Kn) (assuming m = k + 1 for
comparison) attribute to each r, which satisfies the inequalities (C.26) a positive
real number. Table C.4 shows the ratios of these summands.

Comparing these two tables, we see some minor differences, but on the whole,
we can observe a notable coherence. This leads us to the final question we would
like to formulate.

Question C.3.5. What is the relation between the summands of the intrinsic
volumes and the algebraic degree of semidefinite programming?
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n = 2 n = 3 n = 4 n = 5 n = 6
m r percent r percent r percent r percent r percent
1 1 100 2 100 3 100 4 100 5 100
2 1 100 2 100 3 100 4 100 5 100
3 2 50 3 61.54 4 66.67 5 69.57

1 50 2 38.46 3 33.33 4 30.43
4 3 21.05 4 30.77 5 36.36

1 100 2 78.95 3 69.23 4 63.64
5 4 7.17 5 12.5

1 100 2 100 3 92.83 4 87.5
6 5 2.07

2 78.95 3 89.23 4 90.67
1 21.05 2 10.77 3 7.25

7 2 38.46 3 65 4 75.22
1 61.54 2 35 3 24.78

8 3 35 4 51.32
1 100 2 65 3 48.68

9 3 10.77 4 27.83
1 100 2 89.23 3 72.17

Table C.3: Ratios of the algebraic degrees (based on [40, Table 2]).

n = 2 n = 3 n = 4 n = 5 n = 6
k + 1 r percent r percent r percent r percent r percent

1 1 100 2 100 3 100 4 100 5 100
2 1 100 2 100 3 100 4 100 5 100
3 2 50 3 59.78 4 64.80 5 65.71

1 50 2 40.22 3 36.20 4 34.29
4 3 18.11 4 25.76 5 30.36

1 100 2 81.89 3 74.24 4 69.64
5 4 5.12 5 8.38

1 100 2 100 3 95.88 4 91.62
6 5 1.18

2 81.86 3 90.19 4 91.87
1 18.14 2 9.81 3 6.95

7 2 40.19 3 65.72 4 75.19
1 59.81 2 34.28 3 24.81

8 3 34.44 4 49.26
1 100 2 65.56 3 50.74

9 3 9.76 4 24.61
1 100 2 90.24 3 75.39

Table C.4: Ratios of the summands in Vk+1(Kn).
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Appendix D

On the distribution of the
principal angles

The line of research we followed in Chapter 6 may broadly be summarized by say-
ing that we tried to understand the relative positioning of a cap and a subsphere
(cf. Section 3.2; in particular Figure 3.4). In this chapter we will discuss the relative
positioning of two subspheres. This is a classic field tracing back to Jordan [35],
who first defined the principal angles between two subspaces. The goal of this chap-
ter is to further explain the relation between singular values/vectors and principal
angles/directions, and to derive the distribution of the principal angles. The results
are not new, but as we avoid results from multivariate statistics (except for a for-
mula for the hypergeometric function of scalar matrix argument) we will derive a
homogeneous picture of the principal angles. We also believe that a good under-
standing of these concepts in the differential geometric setting is essential for an
aspired (good) smoothed analysis of the Grassmann condition.

D.1 Singular vectors

Recall that the singular value decomposition of a matrix A ∈ Rm×n, m ≤ n, as-
serts that there exist orthogonal matrices Q1 ∈ O(m), Q2 ∈ O(n), and uniquely
determined nonnegative constants σ1 ≥ . . . ≥ σm ≥ 0, such that

A = Q1 ·

(
σ1 0 ··· 0

. . .
...

...
σm 0 ··· 0

)
·QT2 (D.1)

(cf. Theorem 2.1.2). While the singular values of a matrix are unique, this is not
the case for the tuple (Q1, Q2) such that (D.1) holds. To characterize all singular
value decompositions of a single matrix A we make the following definition.

Definition D.1.1. For A ∈ Rm×n and σ > 0 we define

SVA(σ) := {(v, u) ∈ Rn × Rm | Av = σu , A(v⊥) ⊆ u⊥ , ‖v‖ = ‖u‖} ,
SVA(0) := kerA× (imA)⊥ .

We call SVA(σ) the set of singular vectors corresponding to σ. We furthermore
denote the projections of SVA(σ) onto the first and onto the second component by

SV1
A(σ) := Π1(SVA(σ)) , SV2

A(σ) := Π2(SVA(σ)) ,
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where Π1 : Rn × Rm → Rn and Π2 : Rn × Rm → Rm denote the projections.

Proposition D.1.2. For A ∈ Rm×n and σ ≥ 0 the set of singular vectors is a linear
subspace of Rn × Rm. Furthermore, if σ1 6= σ2 then SVi

A(σ1) ∩ SVi
A(σ2) = {0} for

i = 1, 2.

Proof. Clearly, the set SVA(0) = kerA × (imA)⊥ is a vector space. We show the
case σ > 0 in several steps. More precisely, we will show the following properties
about SVA(σ):

1. SVA(σ) is closed,

2. if (v, u) ∈ SVA(σ) and c ∈ R then (cv, cu) ∈ SVA(σ),

3. if (v1, u1), (v2, u2) ∈ SVA(σ) with ‖v1‖ = ‖v2‖ = 1, then (v1 + v2, u1 + u2) ∈
SVA(σ).

If we have shown these properties then we are done, as for (v1, u1), (v2, u2) ∈ SVA(σ)
the vector (v1 + v2, u1 + u2) can be approximated by elements in SVA(σ) using
properties 2 and 3, and thus lies in SVA(σ) by property 1.

Properties 1 and 2 are verified easily. In order to show property 3, we assume that
(v1, u1), (v2, u2) ∈ SVA(σ) with ‖v1‖ = ‖v2‖ = 1. Trivially, we have A(v1 + v2) =
σ(u1 + u2). It remains to show that 〈x, v1 + v2〉 = 0 ⇒ 〈Ax, u1 + u2〉 = 0, and
‖v1 + v2‖ = ‖u1 + u2‖.

Note that the map x 7→ 〈x, vi〉vi is the orthogonal projection onto Rvi. From
A(v⊥i ) ⊆ u⊥i we get 〈Ax, ui〉 = 〈x, vi〉 · 〈Avi, ui〉 = σ〈x, vi〉, i = 1, 2. This implies
〈Ax, u1 + u2〉 = 〈σx, v1 + v2〉, and thus

‖u1 + u2‖2 = 〈u1 + u2, u1 + u2〉 = 〈σ−1 ·A(v1 + v2), u1 + u2〉
= 〈v1 + v2, v1 + v2〉 = ‖v1 + v2‖2 .

Furthermore, if 〈x, v1 +v2〉 = 0 then 〈Ax, u1 +u2〉 = 〈σx, v1 +v2〉 = 0, which finishes
the proof of property 3.

For the additional claim let σ1 6= σ2, and let (vi, ui) ∈ SVA(σi), i = 1, 2. We
need to show that v1 6= v2 and u1 6= u2. For this we first treat the case σ2 = 0. If
u1 = 0 then v1 = 0, so let u1 6= 0. As v2 ∈ kerA and Av1 = σ1u1 6= 0, we have
v1 6= v2. Moreover, since u1 ∈ imA and u2 ∈ (imA)⊥, we have u1 6= u2.

Finally, we assume σ1, σ2 > 0, σ1 6= σ2. W.l.o.g. we may also assume ‖v1‖ =
‖v2‖ = 1. As ‖Avi‖ = σi‖ui‖ = σi, i = 1, 2, we get v1 6= v2. In particular, we have
〈v1, v2〉 < 1. Assuming σ1 > σ2, we get 〈u1, u2〉 = σ−1

1 〈Av1, u2〉 = σ2
σ1
〈v1, v2〉 < 1,

and thus u1 6= u2. 2

In the following proposition we will see that the spaces of left and right singular
vectors characterize all singular value decompositions of A.

Proposition D.1.3. For A ∈ Rm×n, m ≤ n, the linear spaces Rn and Rm decom-
pose into orthogonal sums of the spaces of singular vectors of A, i.e.,

Rn =
⊕
σ≥0

SV1
A(σ) , Rm =

⊕
σ≥0

SV2
A(σ) , (D.2)

and SV1
A(σ)⊥SV1

A(σ′) and SV2
A(σ)⊥SV2

A(σ′) for σ 6= σ′.
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Furthermore, if σ1 ≥ . . . ≥ σm denote the singular values of A, then Q1 ∈ O(m)
and Q2 ∈ O(n) define a SVD of A as in (2.2) iff

(vi, ui) ∈ SVA(σi) , for i = 1, . . . ,m ,

(vj , 0) ∈ SVA(0) , for j = m+ 1, . . . , n ,
(D.3)

where v1, . . . , vn denote the columns of Q2 and u1, . . . , um denote the columns of Q1.

Proof. We first show that Q1 ∈ O(m) and Q2 ∈ O(n) determine a SVD of A as
in (2.2) iff the relations in (D.3) hold. Let k := rk(A) so that σ1 ≥ . . . ≥ σk(A) > 0
and σk+1 = . . . = σm = 0. If Q1 ∈ O(m) and Q2 ∈ O(n) satisfy (2.2), then denoting
the columns of Q1 by u1, . . . , um and the columns of Q2 by v1, . . . , vn, we have

Avi = σiui , for i = 1, . . . , k ,
Avi = 0 , for i = k + 1, . . . ,m ,

Avj = 0 , for j = m+ 1, . . . , n ,
(D.4)

These relations along with the property Q1 ∈ O(m) and Q2 ∈ O(n) are equivalent
to (D.3).

On the other hand, if (D.3) holds for someQ1 ∈ O(m) andQ2 ∈ O(n), then (D.4)
holds, which may be reformulated as

AQ2 = Q1 ·
(
S 0

0 0

)
,

where S := diag(σ1, . . . , σk). In particular, Q1 and Q2 determine a SVD of A as
in (2.2).

As for the claim about the orthogonal decompositions, note that from Theo-
rem 2.1.2 we have the existence of a SVD. The columns u1, . . . , um of Q1 form an
orthonormal basis of Rm, and the columns v1, . . . , vn of Q2 form an orthonormal
basis of Rn. The memberships vj ∈ SV1

A(σj) for j = 1, . . . , n and ui ∈ SV2
A(σi) for

i = 1, . . . ,m, along with the properties of the spaces of singular vectors shown in
Proposition D.1.2, imply the decompositions of Rm and Rn as stated in (D.2). 2

Corollary D.1.4. 1. For σ > 0 the scaled restriction of the linear map defined
by A, given by

SV1
A(σ)→ SV2

A(σ) , v 7→ σ−1 ·Av ,
is bijective and preserves the scalar product. In particular, if σ > 0 then
‖v‖ = ‖u‖ for all (v, u) ∈ SVA(σ).

2. The spaces of singular vectors corresponding to the maximum singular vector
have the simpler characterization SV1

A(‖A‖) = {v | ‖Av‖ = ‖A‖ · ‖v‖} and
SVA(‖A‖) = {(v, u) | Av = ‖A‖ · u}.

Proof. Let the notation be as in Proposition D.1.3.

1. We define the index set I ⊆ {1, . . . ,m} via I = {i | σi = σ}. Then the
columns {vi | i ∈ I} of Q2 form an orthonormal basis of SV1

A(σ), and the
columns {ui | i ∈ I} of Q1 form an orthonormal basis of SV2

A(σ). The claim
follows from the fact that these orthonormal bases are mapped onto each other
by the above defined scaled restriction v 7→ σ−1 ·Av.

2. For A = 0 the claim is trivial, so let us assume ‖A‖ > 0. It suffices to show
the first claim, i.e., that ‖Av‖ = ‖A‖ · ‖v‖ implies v ∈ SV1

A(‖A‖). From the
orthogonal decomposition of Rn in (D.2), and since ‖Av‖ = σ ·‖v‖ < ‖A‖·‖v‖
for v ∈ SV1

A(σ), σ < ‖A‖, we get v ∈ SV1
A(‖A‖) iff ‖Av‖ = ‖A‖ · ‖v‖, which

proves the claim. 2
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D.2 Principal directions

In this section we will further explain the relation between principal angles/directions
and singular values/vectors. Among other things, we will show that the principal
angles determine the relative positions of subspaces. In other words, we will show
that the principal angles are the invariants of the product Grn,m×Grn,M under
the canonical action of the orthogonal group O(n). We will also fill the gap in
the description of the global properties of Grn,m that we left open in Section 5.4
(cf. Proposition 5.4.7).

Recall from Definition 5.4.1 that for W1 ∈ Grn,m and W2 ∈ Grn,M , where
1 ≤ m ≤ M ≤ n − 1, the principal angles α1 ≤ . . . ≤ αm ∈ [0, π2 ] between W1 and
W2 are defined in the following way: Let X1 ∈ Rn×m and X2 ∈ Rn×M be such that
the columns of Xi form an orthonormal basis of Wi, i = 1, 2. Then the principal
angles are the arccosines of the singular values of the matrix XT

1 X2 ∈ Rm×M , i.e.,

XT
1 X2 = Q1

(
cos(α1) 0 ··· 0

. . .
...

...
cos(αm) 0 ··· 0

)
·QT2 ,

where Q1 ∈ O(m) and Q2 ∈ O(M). In the following definition we will define the
concept of principal directions.

Definition D.2.1. Let W1 ∈ Grn,m and W2 ∈ Grn,M , where 1 ≤ m ≤M ≤ n− 1,
and let X1 ∈ Rn×m and X2 ∈ Rn×M be such that the columns of Xi form an
orthonormal basis of Wi, i = 1, 2. The vector space of principal directions of W1

and W2 to the angle α ∈ [0, π2 ] is defined by

PDW1,W2(α) := {(X1u,X2v) | (u, v) ∈ SVXT2 X1
(cosα)} ⊆ Rn × Rn .

Furthermore, we denote the projections of PDW1,W2(α) onto the first and onto the
second component by

PD1
W1,W2

(α) := Π1(PDW1,W2(α)) , PD2
W1,W2

(α) := Π2(PDW1,W2(α)) ,

where Π1 : Rn × Rn → Rn and Π2 : Rn × Rn → Rn denote the projections.

Proposition D.2.2. Let the notation be as in Definition D.2.1. Then neither the
principal angles nor the vector spaces of principal directions depend on the specific
choice of X1 and X2.

Proof. Let X ′1 and X ′2 be a different choice of orthonormal bases of W1 and W2.
Then there exist Q1 ∈ O(m) and Q2 ∈ O(M) such that X ′1 = X1 · Q1 and X ′2 =
X2 · Q2. In particular, we have (X ′2)TX ′1 = QT2 X

T
2 X1Q1, which has the same

singular values as XT
2 X1.

Furthermore, we have that (u, v) is a pair of singular vectors for XT
2 X1 iff

(u′, v′) := (QT1 u,Q
T
2 v) is a pair of singular vectors for (X ′2)TX ′1. But then

X ′1u
′ = X1Q1Q

T
1 u = X1u and X ′2v

′ = X2Q2Q
T
2 v = X2v ,

which finishes the proof. 2

The following proposition summarizes the most important geometric properties
of the spaces of principal directions.

Proposition D.2.3. Let the notation be as in Definition D.2.1 except that we write
PD(α) instead of PDW1,W2(α) to ease the notation.
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1. We have orthogonal decompositions

W1 =
⊕

α∈[0,π2 ]

PD1(α) , W2 =
⊕

α∈[0,π2 ]

PD2(α) .

2. Let α < π
2 . If x ∈ PD1(α) then there exists a unique y ∈ PD2(α) such that

(x, y) ∈ PD(α). Furthermore, if (x, y) ∈ PD(α) then ‖x‖ = ‖y‖.

3. For α = 0:
PD(0) = {(x, x) | x ∈ W1 ∩W2} .

In particular, we have PD1(α) = PD2(α) =W1 ∩W2.

4. For α = π
2 :

PD(π2 ) =W1 ∩W⊥2 × W⊥1 ∩W2 .

In particular, we have PD1(α) =W1 ∩W⊥2 and PD2(α) =W⊥1 ∩W2.

5. For 0 < α < π
2 : Let (x1, y1), . . . , (xk, yk) ∈ PD(α) such that x1, . . . , xk form

an orthonormal basis of PD1(α), and let Li := lin{xi, yi}, i = 1, . . . , k. Then
we get:

(a) y1, . . . , yk is an orthonormal basis of PD2(α),

(b) 〈xi, yi〉 = cos(α), in particular dimLi = 2 for i = 1, . . . , k,

(c) Li⊥Lj for i 6= j.

Proof. We process the statements one by one:

1. This follows directly from the orthogonal decompositions (D.2) in Proposi-
tion D.1.3.

2. Let σ := cos(α) > 0. For x ∈ PD1(α) there exists a unique u ∈ SV1
XT2 X1

(σ)
such that x = X1u. For v := σ−1 · XT

2 X1u, and only for this choice of v,
we have (u, v) ∈ SVXT2 X1

(σ). Therefore y = X2v is uniquely determined
by the property (x, y) ∈ PD(α). Furthermore, we have ‖X1u‖ = ‖u‖ and
‖X2v‖ = ‖v‖, and by Corollary D.1.4 part (1) we also have ‖u‖ = ‖v‖.

3. Let (x, y) ∈ PD(0), with x = X1u and y = X2v, (u, v) ∈ SVXT2 X1
(1). Then

we have ΠW2(x) = X2X
T
2 X1u = X2v = y, and since ‖x‖ = ‖y‖ by part (2),

we get x = y.

On the other hand, if x ∈ W1 ∩W2 \ {0}, then there exist u ∈ Rm \ {0} and
v ∈ RM \ {0} such that x = X1u and x = X2v. Therefore XT

2 X1u = v, and
since ‖u‖ = ‖v‖ > 0, we get ‖XT

2 X1‖ ≥ 1. So we have ‖XT
2 X1‖ = 1 and by

Corollary D.1.4 part (2) we get SVXT2 X1
(1) = {(u′, v′) | XT

2 X1u
′ = v′}. In

particular, (u, v) ∈ SVXT2 X1
(1) and (x, x) ∈ PD(0).

4. Recall that SVXT2 X1
(0) = kerXT

2 X1 × (imXT
2 X1)⊥. For the first component

we compute

XT
2 X1u = 0 ⇐⇒ X2X

T
2 X1u = 0

⇐⇒ X1u ∈ W⊥2 .
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For the second component we compute

v ∈ (imXT
2 X1)⊥ ⇐⇒ 〈v,XT

2 X1u〉 = 0 ∀u ∈ Rm

⇐⇒ 〈X2v,X2X
T
2 X1u〉 = 0 ∀u ∈ Rm

⇐⇒ X2v ∈ (ΠW2(W1))⊥

⇐⇒ X2v ∈ W⊥1 .

5. The vectors y1, . . . , yk form an orthonormal basis of PD2(α) by Corollary D.1.4
part (1). Furthermore, denoting σ := cos(α), we compute

〈xi, yj〉 = 〈ΠW2(xi), yj〉 = 〈X2X
T
2 X1ui, yj〉 = 〈X2 · σvi, X2vj〉 = σ · δij ,

where δij denotes the Kronecker-delta. This shows the claims in part (b)
and (c). 2

Corollary D.2.4. Let W1 ∈ Grn,m and W2 ∈ Grn,M , where 1 ≤ m ≤ M ≤ n− 1.
Furthermore, let α1 ≤ . . . ≤ αm denote the principal angles between W1 and W2,
and let d :=W1 ∩W2 and d⊥ :=W1 ∩W⊥2 , so that

0 = α1 = . . . = αd < αd+1 ≤ . . . ≤ αm−d⊥ < αm−d⊥+1 = . . . = αm = π
2 .

Then we have an orthogonal decomposition

Rn = (W1 ∩W2) ⊕ Ld+1 ⊕ . . . ⊕ Lm−d⊥ (D.5)

⊕ (W1 ∩W⊥2 ) ⊕ (W⊥1 ∩W2) ⊕ (W1 +W2)⊥ ,

where Li = lin{xi, yi} with (xi, yi) ∈ PDW1,W2(αi) for i = d+ 1, . . . ,m− d⊥.

Proof. First of all, we have the orthogonal decomposition Rn = (W1 +W2)⊕ (W1 +
W2)⊥. Using the decompositions of W1 and W2 in Proposition D.2.3 we get the
stated decomposition of W1 +W2. 2

Corollary D.2.5. Let the notation be as in Definition D.2.1. The nonzero principal
angles between W1 and W2 coincide with the nonzero principal angles between W⊥1
and W⊥2 . More precisely,

∀α ∈ (0, π2 ] : dim PDW1,W2(α) = dim PDW⊥1 ,W⊥2 (α) .

Proof. Let Rn be decomposed as in (D.5). Denoting L1
i := lin{xi} and L2

i := lin{yi}
for d+ 1 ≤ i ≤ m− d⊥, we have

W1 = (W1 ∩W2) ⊕ L1
d+1 ⊕ . . . ⊕ L1

m−d ⊕ (W1 ∩W⊥2 ) ,

W2 = (W1 ∩W2) ⊕ L2
d+1 ⊕ . . . ⊕ L2

m−d ⊕ (W⊥1 ∩W2) .
(D.6)

Let L̂1
i denote the orthogonal complement of L1

i in Li, and let L̂2
i denote the orthog-

onal complement of L2
i in Li. The decompositions of W1 and W2 in (D.6) imply

that its orthogonal complements W⊥1 and W⊥2 decompose in the following way

W⊥1 = (W⊥1 ∩W2) ⊕ L̂1
d+1 ⊕ . . . ⊕ L̂1

m−d ⊕ (W1 +W2)⊥ ,

W⊥2 = (W1 ∩W⊥2 ) ⊕ L̂2
d+1 ⊕ . . . ⊕ L̂2

m−d ⊕ (W1 +W2)⊥ .

The angle between L̂1
i and L̂2

i is the same as the angle between L1
i and L2

i . Choosing
appropriate bases shows that these are indeed the principal angles and thus finishes
the proof. 2
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The following proposition shows that the principal angles determine the relative
positions of subspaces.

Proposition D.2.6. Let W1,W ′1 ∈ Grn,m and W2,W ′2 ∈ Grn,M , where 1 ≤ m ≤
M ≤ n − 1. Furthermore, let α1 ≤ . . . ≤ αm denote the principal angles between
W1 and W2, and let α′1 ≤ . . . ≤ α′m denote the principal angles between W ′1 and
W ′2. Then

∃Q ∈ O(n) : Q(W1) =W ′1 , Q(W2) =W ′2 ⇐⇒ ∀i = 1, . . . ,m : αi = α′i .

Proof. If W ′1 = Q(W1) and W ′2 = Q(W2) for some Q ∈ O(n), and if X1 and X2 are
orthonormal bases for W1 and W2 respectively, then QXi is an orthonormal basis
for W ′i, i = 1, 2. Since (QX1)TQX2 = XT

1 Q
TQX2 = XT

1 X2, the principal angles
between W1 and W2 coincide with the principal angles between W ′1 and W ′2.

On the other hand, if all the principal angles coincide, then there is an or-
thogonal transformation such that the orthogonal decomposition of Rn as stated
in Corollary D.2.4 transforms into a corresponding decomposition of Rn with W1

and W2 being replaced by W ′1 and W ′2. The decomposition of W1 and W2 as given
in (D.6) shows that the orthogonal transformation can be chosen in such a way that
additionally W1 goes into W ′1 and W2 goes into W ′2. 2

We finish this section with a supplement to Section 5.4. More precisely, in
Proposition 5.4.7 we have listed a couple of global properties of Grn,m that we did
not prove. We fill this gap with the help of the principal directions.

The statement of Proposition 5.4.7 was the following: Let W = [Q] ∈ Grn,m,
and let

U :=
{[

Q,

(
0 −RT
R 0

)]∣∣∣∣R ∈ R(n−m)×m , ‖R‖ < π

2

}
⊂ TW Grn,m ,

where ‖R‖ denotes the operator norm of R. Furthermore, let U denote the closure
of U , and let ∂U denote the boundary of U . Then the following holds.

1. The exponential map expW is injective on U .

2. The exponential map expW is surjective on U .

3. If v =
[
Q,

(
0 −RT
R 0

)]
∈ U and W ′ = expW(v), then the curve

[0, 1]→ Grn,m , ρ 7→ expW(ρ · v)

is a shortest length geodesic between W and W ′. In particular, we have
dg(W,W ′) = ‖v‖ = ‖R‖F .

4. For v ∈ ∂U we have expW(v) = expW(−v), so that the injectivity radius of
Grn,m is π

2 .

Proof of Proposition 5.4.7. A general argument, the so-called Hopf-Rinow Theorem
(cf. for example [19, Thm. I.7.1]), implies that each pair of elements in Grn,m can
be joined by a geodesic. We will argue this via principal angles/directions, as this
will give us the extensive statement of Proposition 5.4.7.

For notational simplicity, let us assume m ≤ n
2 ; the case m ≥ n

2 follows analo-
gously. LetW,W ′ ∈ Grn,m, and let α1, . . . , αm denote the principal angles between
W and W ′. By Corollary D.2.4 and Proposition D.2.3 we can find an orthogonal
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basis x1, . . . , xn of Rn such that W = lin{x1, . . . , xm} and W ′ = lin{y1, . . . , ym},
where yi = cos(αi) · xi + sin(αi) · xm+i for i = 1, . . . ,m. Let Q ∈ O(n) be such
that the ith column of Q is xi, and let C and S denote the diagonal matrices
C = diag(cos(α1), . . . , cos(αm)), S = diag(sin(α1), . . . , sin(αm)). Setting

v :=

Q,
0 −A 0
A 0 0
0 0 0

 ∈ TW Grn,m , with A = diag(α1, . . . , αm) , (D.7)

it follows that W ′ is given by

W ′ = expW(v) =

Q ·
C −S 0
S C 0
0 0 In−2m

 . (D.8)

In particular, we have shown that the image of U under the exponential map covers
Grn,m.

On the other hand, we have seen in Lemma 5.4.5 that any geodesic through W
can be brought to the form (D.8). From such a representation one can easily deduce
the principal angles and the spaces of principal directions. Furthermore, using the
decomposition of Rn as shown in Corollary D.2.4, the remaining statements of
Proposition 5.4.7 are a small but notation-consuming exercise. 2

D.3 Computing the distribution of the principal
angles

In this section we will compute the volume of metric balls of the Grassmann mani-
fold. More precisely, we will compute the Normal Jacobian of the parametrization
of Grn,m, which involves the principal angles to a fixed M -dimensional subspace
of Rn, where M may be any integer within m ≤ M ≤ n −m (this generalization
is needed for the smoothed analysis in Section 7.3). The parametrization will be
defined in (D.9). It exploits the geometry of the principal directions as described in
Proposition D.2.3.

We derive the Normal Jacobian of the parametrization via differential geometric
methods. See [2] for a different approach via multivariate statistics. In this paper
(cf. [2, Thm. 1]) the volume of metric balls in Grn,m w.r.t. the Hausdorff metric was
computed. We will obtain this in Proposition D.3.4.

The following proposition is the main result of this section. It includes the
formula of the above mentioned Normal Jacobian. The proof of this proposition is
deferred to the end of this section.

Proposition D.3.1. Let 1 ≤ m ≤ M ≤ n − 1 with m + M ≤ n. Using the
identification Stn,m = O(n)/O(n−m) and Grn,m = O(n)/(O(m)×O(n−m)), let

ϕ : StM,m × Stn−M,m×Rm → Grn,m

([Q1], [Q2], v) 7→

( Q1 0
0 Q2

)
·


C −S

IM−m 0
S C

0 In−m−M


 , (D.9)
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where C = diag(cos(v1), . . . , cos(vm)), S = diag(sin(v1), . . . , sin(vm)). The Normal
Jacobian of ϕ is given by

ndet(D([Q1],[Q2],v)ϕ) =
∏
j<i

∣∣sin2 vi cos2 vj − cos2 vi sin2 vj
∣∣

·
m∏
i=1

∣∣sin(vi)n−M−m · cos(vi)M−m
∣∣ .

In particular, for M = m we have

ndet(D(Q1,[Q2],v)ϕ) =
∏
j<i

∣∣sin2 vi cos2 vj − cos2 vi sin2 vj
∣∣ · m∏
i=1

∣∣sin(vi)n−2m
∣∣ .

Note that the map ϕ as defined in (D.9) is well-defined, which is seen by the
following small computation. For Q′1 ∈ O(M) such that [Q′1] = [Q1] in StM,m and
for Q′2 ∈ O(n−M) such that [Q′2] = [Q2] in Stn−M,m, we can find Q̄1 ∈ O(M −m)
and Q̄2 ∈ O(n−M −m) such that

Q′1 = Q1 ·
(
Im 0
0 Q̄1

)
, Q′2 = Q2 ·

(
Im 0
0 Q̄2

)
.

We thus get

(
Q′1 0
0 Q′2

)
·


C −S

IM−m 0
S C

0 In−m−M



=
(
Q1 0
0 Q2

)
·


Im 0

Q̄1 0
0 Im

0 Q̄2

 ·


C −S
IM−m 0

S C
0 In−m−M

 .

The second product on the right-hand side of the above equation is commutative,
so that we get in Grn,m = O(n)/(O(m)×O(n−m))( Q′1 0

0 Q′2

)
·


C −S

IM−m 0
S C

0 In−m−M




=

( Q1 0
0 Q2

)
·


C −S

IM−m 0
S C

0 In−m−M

 ·


Im 0
Q̄1 0

0 Im
0 Q̄2




=

( Q1 0
0 Q2

)
·


C −S

IM−m 0
S C

0 In−m−M


 .

This shows the well-definedness of ϕ as defined in (D.9).
Let us first use the result to compute the volume of Grassmannian balls. We

say that a metric d∗ : Grn,m×Grn,m → R is induced by the symmetric function
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f∗ : [0, π2 ]m → R, i.e., f∗(α1, . . . , αm) = f∗(αP (1), . . . , αP (m)) for any permutation P ,
if

d∗(W1,W2) = f∗(α) ,

for W1,W2 ∈ Grn,m, where α ∈ Rm is the vector of principal angles between
W1 and W2. By Proposition D.2.6 any orthogonally invariant metric on Grn,m is
induced by such a symmetric function.

For the computation of the volume of Grassmannian balls we define the following
transformation

T : [0, π2 ]m → [0, 1]m , (v1, . . . , vm) 7→ (sin(v1)2, . . . , sin(vm)2) .

Proposition D.3.2. Let d∗ be a metric on Grn,m induced by f∗ : [0, π2 ]m → R.
For W0 ∈ Grn,m and β ≥ 0 let B∗(W0, β) denote the ball of radius β around W0

w.r.t. the metric d∗. The relative volume of B∗(W0, β) is given by

rvolB∗(W0, β) =
π
m
2

m!
·
m−1∏
i=0

Γ(n−i2 )
Γ( i+1

2 )2 · Γ(n−m−i2 )

·
∫

T (K∗(β))

∏
i<j

|si − sj | ·
m∏
i=1

s
n−2m−1

2
i · (1− si)−

1
2 ds ,

where K∗(β) :=
{
v ∈ [0, π2 ]m | f∗(v) < β

}
.

Proof. For generic W ∈ Grn,m the principal angles α1, . . . , αm between W and W0

are mutually distinct and lie in the open interval (0, π2 ), i.e., we have

0 < α1 < . . . < αm <
π

2
.

To see that this holds generically, note that α1 = 0 iff W ∩W0 6= {0}, and αm = π
2

iff W ∩W⊥0 6= {0}. Furthermore, αi = αj for some i 6= j iff the singular values of
the matrix XT

0 X, where X0, X ∈ Rn×m are such that the columns of X0 form an
orthonormal basis of W0 and the columns of X form an orthonormal basis of W,
are not all mutually distinct. These are finitely many events with probability 0 and
thus altogether have probability 0.

When the principal angles are strictly increasing then the principal directions
are uniquely determined up to multiplication by ±1 (cf. Section D.2). So if we
consider the function

ϕ : O(m)× Stn−m,m×K<
∗ (β)→ Grn,m

(Q1, [Q2], v) 7→

( Q1 0
0 Q2

)
·

 C −S
S C

In−2m

 ,

where K<
∗ (β) :=

{
v ∈ (0, π2 )m | f∗(v) < β , v1 < . . . < vm

}
, then we will get a 2m-

fold covering of the image of ϕ, which lies dense in B∗(W0, β), the ball w.r.t. d∗ of
radius β around W0. Applying the smooth coarea formula, Proposition D.3.1 (for
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M = m) implies that

volB∗(W0, β) =
1

2m
·
∫
O(m)

∫
Stn−m,m

∫
K<
∗ (β)

ndet(Q1,[Q2],v)(ϕ) dv d[Q2] dQ1

=
volO(m) · vol Stn−m,m

2m

·
∫

K<
∗ (β)

∏
i<j

∣∣sin2 vi cos2 vj − cos2 vi sin2 vj
∣∣ · m∏
i=1

sin(vi)n−2m dv .

We may change the integration over K<
∗ (β) to an integration over K∗(β) if we divide

the result by m!. Dividing by vol Grn,m to get the relative volume, we get

rvolB∗(W0, β) =
volO(m) · vol Stn−m,m

vol Grn,m ·m! · 2m

·
∫

K∗(β)

∏
j<i

∣∣sin2 vi cos2 vj − cos2 vi sin2 vj
∣∣ · m∏
i=1

sin(vi)n−2m dv .

Using Proposition 5.2.1, (5.19), and (5.23), the constant computes as

volO(m) · vol Stn−m,m
vol Grn,m ·m! · 2m

=
2m · πm

2+m
4∏m

d=1 Γ(d2 )
· 2m · π 2nm−3m2+m

4∏n−m
d=n−2m+1 Γ(d2 )

·
∏m
d=1 Γ(n−m+d

2 )

π
m(n−m)

2 ·
∏m
d=1 Γ(d2 )

· 1
m! · 2m

=
2m · πm2
m!

·
m−1∏
i=0

Γ(n−i2 )
Γ( i+1

2 )2 · Γ(n−m−i2 )
.

It remains to change the integration over K∗(β) to an integration over T (K∗(β)).
Substituting v by s := T (v) = (sin(v1)2, . . . , sin(vm)2) yields∫

K∗(β)

∏
i<j

| sin2 vi · cos2 vj − cos2 vi · sin2 vj | ·
m∏
i=1

sin(vi)n−2m dv

=
∫

T (K∗(β))

m∏
i=1

1
2
√
si · (1− si)

·
∏
i<j

|si − sj | ·
m∏
i=1

s
n−2m

2
i ds

= 2−m ·
∫

T (K∗(β))

∏
i<j

|si − sj | ·
m∏
i=1

s
n−2m−1

2
i · (1− si)−

1
2 ds. 2

For the Hausdorff metric the volume of the metric ball can be written in terms
of the so-called hypergeometric function. We will describe the few basic facts about
this function that we will make use of in the following remark.

Remark D.3.3. Let X ∈ Cm×m be a complex symmetric (m ×m)-matrix, with
‖X‖ < 1, and let a, b, c ∈ C, with c 6∈ Z ∪ 1

2 · Z. The Gaussian hypergeometric
function of matrix argument is defined as the convergent series

2F1(a, b; c;X) =
∞∑
k=0

∑
κ`k

(a)κ · (b)κ
(c)κ

· Cκ(X)
k!

,
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where the second summation runs over all partitions κ of k, Cκ(X) denotes the
zonal polynomial of X corresponding to κ (cf. [38, Def. 7.2.1]), and (a)κ denotes the
generalized Pochhammer symbol

(a)κ =
∏̀
i=1

ki−1∏
j=0

(
a− i− 1

2
+ j

)
,

if κ = (κ1, . . . , κ`). If X = r · Im is a scalar multiple of the identity matrix, then
the hypergeometric function has the integral representation

2F1(a, b; c; r · Im) =
π
m
2

m!
·
m−1∏
d=0

Γ(c− d
2 )

Γ(m−d2 ) · Γ(a− d
2 ) · Γ(c− a− d

2 )
(D.10)

·
∫

[0,1]m

∏
i<j

|si − sj | ·
m∏
i=1

s
a−m+1

2
i · (1− si)c−a−

m+1
2

(1− r · si)b
ds1 · · · dsm ,

holding for the same restrictions on a and c as before, and 0 < r < 1 (see for
example [33, (3.1)] or [28, (3.16)]).

Note that if we set b = 0 then using the Selberg integral Sn(α, β, γ) (cf. (C.1) in
Section C.1), we get

2F1(a, 0; c; r · Im) =
π
m
2

m!
·
m−1∏
d=0

Γ(c− d
2 )

Γ(m−d2 ) · Γ(a− d
2 ) · Γ(c− a− d

2 )

· Sm
(
a− m−1

2 , c− a− m−1
2 , 1

2

)
= 1 ,

which may also be easily deduced from the definition of 2F1 as an infinite series.
Also, for a, b, c ∈ R+ we have

2F1(a, b; c; r · Im) ≥ 1 , (D.11)

as all summands are real and nonnegative and the first summand equals 1.

Proposition D.3.4. For W0 ∈ Grn,m and β ∈ [0, π2 ] let BH(W0, β) denote the
ball of radius β around W0 w.r.t. the Hausdorff metric dH. The relative volume of
BH(W0, β) is given by

rvolBH(W0, β) = sin(β)m(n−m) ·
[
n
m

]−1

· 2F1(n−m2 , 1
2 ; n+1

2 ; sin2 β · Im)

≥ sin(β)m(n−m) ·
[
n
m

]−1

.

Proof. From Proposition D.3.2 we get

rvolBH(W0, β) =
π
m
2

m!
·
m−1∏
i=0

Γ(n−i2 )
Γ( i+1

2 )2 · Γ(n−m−i2 )

·
∫

T (KH(β))

∏
i<j

|si − sj | ·
m∏
i=1

s
n−2m−1

2
i · (1− si)−

1
2 ds ,
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where KH(β) = [0, β]m. Note that T (KH(β)) = [0, sin2 β]m. Scaling the domain by
1

sin2 β
to get an integration over [0, 1]m and using the integral representation (D.10)

of the hypergeometric function of scalar matrix argument yields∫
[0,sin2 β]m

∏
i<j

|si − sj | ·
m∏
i=1

s
n−2m−1

2
i · (1− si)−

1
2 ds

= (sin2 β)
m(m−1)

2 +m·n−2m−1
2 +m∫

[0,1]m

∏
i<j

|si − sj | ·
m∏
i=1

s
n−2m−1

2
i · (1− sin2 β · si)−

1
2 ds

= sin(β)m(n−m) · m!
π
m
2
·
m−1∏
d=0

Γ(m−d2 ) · Γ(a− d
2 ) · Γ(c− a− d

2 )
Γ(c− d

2 )

· 2F1(n−m2 , 1
2 ; n+1

2 ; sin2 β · Im) .

So the constant mostly cancels leaving Γ(m+1
2 )·Γ(n−m+1

2 )

Γ( 1
2 )·Γ(n+1

2 )
=
[
n
m

]−1

. The estimate

follows from (D.11), which finishes the proof. 2

In the following corollary we will deduce from Proposition D.3.1 some formu-
las for probabilities involving the relative positions of an m-dimensional to an M -
dimensional subspace of Rn.

Corollary D.3.5. Let 1 ≤ m ≤M ≤ n− 1 with m+M ≤ n, and let W0 ∈ Grn,M
fixed. If W ∈ Grn,m is chosen uniformly at random then

Prob[^max(W0,W) ≤ β] = sin(β)m(n−M) ·
m∏
d=1

Γ(d+1
2 ) · Γ(n−m+d

2 )
Γ(M−m+d

2 ) · Γ(n−M+1+d
2 )

· 2F1(n−M2 , m+1−M
2 ; n−M+m+1

2 ; sin2 β · Im) ,

where ^max(W0,W) denotes the largest principal angle between W0 and W. In
particular, if M = m+ 1 then

Prob[^max(W0,W) ≤ β] = sin(β)m(n−m)−m .

Furthermore, for the smallest principal angle ^min(W0,W) between W0 and W we
have the estimate

Prob[^min(W0,W) ≤ β]

≤ In−2m+2,M−m(β) · m(n−M −m+ 1)
n−M + 1

·
[
n−m
M − 1

]
·
(

(n−M + 1)/2
m/2

)
,

where again In,j(β) =
∫ β

0
cos(ρ)j · sin(ρ)n−2−j dρ. For M = m+ 1 this simplifies to

Prob[^min(W0,W) ≤ β] ≤ In−2m+2,1(β) · m(n− 2m)
n−m

·
(
n−m
m

)
.

Proof. The arguments are similar to those in the proof of Proposition D.3.2, so we
may skip some technicalities. Considering the function ϕ : Stm,M ×Stn−M,m×U →
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Grn,m defined in (D.9) we see that for U = U1 := [0, β]m we get a (2m ·m!)-fold
covering (of a dense subset) of the set

{W ∈ Grn,m | ^max(W0,W) ≤ β]

and for U = U2 := {v ∈ Rm | 0 < v1 < β , v1 < vi <
π
2 ∀i = 2, . . . ,m} we get a

(2m · (m− 1)!)-fold covering (of a dense subset) of the set

{W ∈ Grn,m | ^min(W0,W) ≤ β} .

The transformation formula and Proposition D.3.1 thus imply

Prob[^max(W0,W) ≤ β] =
vol StM,m · vol Stn−M,m

vol Grn,m ·m! · 2m

·
∫
U1

∏
j<i

∣∣sin2 vi cos2 vj − cos2 vi sin2 vj
∣∣ · m∏
i=1

sin(vi)n−m−M · cos(vi)M−m dv

and

Prob[^min(W0,W) ≤ β] =
vol StM,m · vol Stn−M,m

vol Grn,m ·(m− 1)! · 2m

·
∫
U2

∏
j<i

∣∣sin2 vi cos2 vj − cos2 vi sin2 vj
∣∣ · m∏
i=1

sin(vi)n−m−M · cos(vi)M−m dv .

The constant computes as

vol StM,m · vol Stn−M,m

vol Grn,m ·m! · 2m
=

2m · πm2
m!

·
m∏
d=1

Γ(n−m+d
2 )

Γ(d2 ) · Γ(M−m+d
2 ) · Γ(n−m−M+d

2 )
.

The same arguments as in the proof of Proposition D.3.4 yield the claim about
Prob[^max(W0,W) ≤ β], where the simplification in the special case M = m + 1
follows from the fact 2F1(a, 0; c; r · Im) = 1 (cf. Remark D.3.3).

As for the statement about the smallest principal angle, we compute∫ β

0

∫ π
2

v1

· · ·
∫ π

2

v1

∏
j<i

∣∣sin2 vi cos2 vj − cos2 vi sin2 vj
∣∣

·
m∏
i=1

sin(vi)n−m−M · cos(vi)M−m dvm · · · dv2 dv1

si:=sin2 vi=
∫ sin2 β

0

∫ 1

s1

· · ·
∫ 1

s1

m∏
i=1

1
2
√
si(1− si)

·
∏
j<i

|si − sj |

·
m∏
i=1

s
n−m−M

2
i · (1− si)

M−m
2 dsm · · · ds2 ds1

=
1

2m
·
∫ sin2 β

0

s
n−m−M−1

2
1 · (1− s1)

M−m−1
2

∫ 1

s1

· · ·
∫ 1

s1

m∏
i=2

(si − s1) ·
∏

2≤j<i

|si − sj |

·
m∏
i=2

s
n−m−M−1

2
i · (1− si)

M−m−1
2 dsm · · · ds2 ds1 .
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By estimating si − s1 ≤ si and by extending the integrals from the interval [s1, 1]
to [0, 1] we may continue

≤ 1
2m
·
∫ sin2 β

0

s
n−m−M−1

2
1 · (1− s1)

M−m−1
2 ds1 ·

∫ 1

0

· · ·
∫ 1

0

∏
2≤j<i

|si − sj |

·
m∏
i=2

s
n−m−M+1

2
i · (1− si)

M−m−1
2 dsm · · · ds2

≤ 1
2m
·
∫ sin2 β

0

s
n−m−M−1

2
1 · (1− s1)

M−m−1
2 ds1 · Sm−1(n−m−M+3

2 , M−m+1
2 , 1

2 ) ,

where Sn(x, y, z) shall denote the Selberg integral (cf. Section C.1). Evaluating the
Selberg integral, we may continue

=
1

2m
·
∫ β

0

2 · sin v1 · cos v1 · sin(v1)n−m−M−1 · cos(v1)M−m−1 ds1

· (m− 1)!

π
m−1

2

·
m−2∏
d=0

Γ(m−1−d
2 ) · Γ(n−M−d+1

2 ) · Γ(M−1−d
2 )

Γ(n−d2 )

=
(m− 1)!

2m−1 · πm−1
2

· In−2m+2,M−m(β) ·
m−2∏
d=0

Γ(m−1−d
2 ) · Γ(n−M−d+1

2 ) · Γ(M−1−d
2 )

Γ(n−d2 )
.

Combining this with the above given formula for Prob[^min(W0,W) ≤ β] we get

Prob[^min(W0,W) ≤ β] ≤ 2
√
π · In−2m+2,M−m(β)

·
Γ(n−m+1

2 )
Γ(M2 ) · Γ(n−M−m+1

2 )
·

Γ(n−M+1
2 )

Γ(m2 ) · Γ(n−M−m+2
2 )

.

A straightforward computation, using the identities in Proposition 4.1.20, finishes
the proof. 2

We finish this section with the proof of Proposition D.3.1.

Proof of Proposition D.3.1. For x = (x1, . . . , xm) ∈ Rm, let

Cx := diag(cos(x1), . . . , cos(xm)) , Sx := diag(sin(x1), . . . , sin(xm)) .

We need to compute the Normal Jacobian of the function ϕ defined in (D.9); so
first, we will have to compute the differential Dϕ in ([Q1], [Q2], v). As the domain
of ϕ is the direct product StM,m×Stn−M,m×U , U ⊆ Rm, the tangent space also
decomposes into a direct product. We will consider these components separately.
Recall that we have given an extensive description of the Stiefel and the Grassmann
manifold in Section 5.3.1 and Section 5.3.2, which we will make use of in the following
argumentation.

By symmetry, we may assume w.l.o.g. that Q1 = IM and Q2 = In−M . Let
Wv := ϕ([IM ], [In−M ], v). For the first component we consider a curve c̄1 in StM,m =
O(M)/O(M −m) defined by a curve c1 in O(M):

c1 : R→ O(M) , c1(0) = IM ,
dc1
dt

(0) =
(
U1 −RT1
R1 0

)
,

c̄1 : R→ StM,m , c̄1(t) = [c1(t)] ,
dc̄1
dt

(0) =
[
IM ,

(
U1 −RT1
R1 0

)]
,
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where U1 ∈ Skewm and R1 ∈ R(M−m)×m. Let us abbreviate C := Cv and S := Sv.
Then we get

ϕ(c̄1(t), [In−M ], v) = [Q1(t)] ,

where Q1(t) ∈ O(n) is given by

Q1(t) =
(
c1(t) 0

0 In−M

)
·


C −S

IM−m 0
S C

0 In−m−M

 .

Note that

Q1(0) =


C −S

IM−m 0
S C

0 In−m−M

 =: Qv , (D.12)

and [Qv] =Wv ∈ Grn,m. We compute

dQ1

dt
(0) =

( dc1
dt (0) 0

0 0

)
·


C −S

IM−m 0
S C

0 In−m−M



= Qv ·Q−1
v ·


U1 −RT1 0
R1 0 0

0 0 0

 ·Qv

(∗)
= Qv ·


CU1C −CRT1 −CU1S 0
R1C 0 −R1S 0

− SU1C SRT1 SU1S 0
0 0 0 0

 ,

where (∗) is verified easily (note that Q−1
v = QTv ). We get

Dϕ
(
dc̄1
dt (0), 0, 0

)
=
dϕ(c̄1(t), [In−M ], v)

dt
(0) =

d[Q1(t)]
dt

(0)

=

Qv,
 0 −CU1S 0

0 0

− SU1C 0 00 0


 ∈ T[Qv ] Grn,m .

This settles the first component. As for the second component, let us consider the
curves

c2 : R→ O(n−M) , c2(0) = In−M ,
dc2
dt

(0) =
(
U2 −RT2
R2 0

)
,

c̄2 : R→ Stn−M,m , c̄2(t) = [c2(t)] ,
dc̄2
dt

(0) =
[
In−M ,

(
U2 −RT2
R2 0

)]
,

where U2 ∈ Skewm and R2 ∈ R(n−M−m)×m. Then we get

ϕ([IM ], c̄2(t), v) = [Q2(t)] ,
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where Q2(t) ∈ O(n) is given by

Q2(t) =
(
IM 0
0 c2(t)

)
·


C −S

IM−m 0
S C

0 In−m−M

 .

Note again, that Q2(0) = Qv. As above, we compute

dQ2

dt
(0) =

 0 0

0 dc2
dt (0)

 ·


C −S
IM−m 0

S C
0 In−m−M



= Qv ·Q−1
v ·

 0 0 0

0 U2 −RT2
0 R2 0

 ·Qv

(∗∗)
= Qv ·


SU2S 0 SU2C −SRT2

0 0 0 0

CU2S 0 CU2C −CRT2
R2S 0 R2C 0

 ,

where (∗∗) is again verified easily. We get

Dϕ
(
0, dc̄2dt (0), 0

)
=
dϕ([IM ], c̄1(t), v)

dt
(0) =

d[Q2(t)]
dt

(0)

=

Qv,
 0 SU2C −SRT2

0 0

CU2S 0 0
R2S 0


 ∈ T[Qv ] Grn,m .

This settles the second component. As for the third, we consider the curve

c3 : R→ Rm , c3(0) = v ,
dc3
dt

(0) = ζ ,

where ζ ∈ TvRm = Rm. Then we get

ϕ([IM ], [In−M ], c3(t)) = [Q3(t)] ,

where

Q3(t) =


Cc3(t) −Sc3(t)

IM−m 0
Sc3(t) Cc3(t)

0 In−m−M

 .
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We compute

dQ3

dt
(0) =


−S · diag(ζ) −C · diag(ζ)

0 0
C · diag(ζ) −S · diag(ζ)

0 0



=


C −S

IM−m 0
S C

0 In−m−M

 ·


0 −diag(ζ)
0 0

diag(ζ) 0
0 0



= Qv ·


0 −diag(ζ)

0 0
diag(ζ) 0

0 0

 .

We get

Dϕ
(
0, 0, dc3dt (0)

)
=
dϕ([IM ], [In−M ], c3(t))

dt
(0) =

d[Q3(t)]
dt

(0)

=

Qv,
 0 −diag(ζ)

0
diag(ζ) 00


 ∈ T[Qv] Grn,m .

This settles the third component.
We have thus a full description of the differential Dϕ. To compute the nor-

mal Jacobian it remains to specify orthonormal bases for the tangent spaces TvR,
T[IM ] StM,m, T[In−M ] Stn−M,m, set up the corresponding Jacobi matrix, and compute
its determinant.

Let us write Ekij for the (i, j)th elementary matrix of format k × k. Let us
furthermore define

ξij :=
[
IM , E

M
ij − EMji

]
∈ T[IM ] StM,m ,

ηij :=
[
In−M , E

n−M
ij − En−Mji

]
∈ T[In−M ] Stn−M,m .

Then we have the following orthonormal bases of T[IM ] StM,m and T[In−M ] Stn−M,m:

T[IM ] StM,m : ξij , 1 ≤ j < i ≤ m or (m+ 1 ≤ i ≤M , 1 ≤ j ≤ m) ,
T[In−M ] Stn−M,m : ηij , 1 ≤ j < i ≤ m or (m+ 1 ≤ i ≤ n−M , 1 ≤ j ≤ m) ,

To get a nice form of the Jacobi matrix let us choose the following order of the basis
vectors of

T[IM ] StM,m×T[In−M ] Stn−M,m×TvRm :

1. the canonical basis of TvRm = Rm,

2. the first half of T[IM ] StM,m consisting of

ξij , 1 ≤ j < i ≤ m ,

3. the first half of T[In−M ] Stn−M,m consisting of

ηij , 1 ≤ j < i ≤ m ,
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4. the second half of T[IM ] StM,m consisting of

ξij , m+ 1 ≤ i ≤M , 1 ≤ j ≤ m ,

5. the second half of T[In−M ] Stn−M,m consisting of

ηij , m+ 1 ≤ i ≤ n−M , 1 ≤ j ≤ m .

To set up the Jacobi matrix of ϕ, it remains to specify an order of the basis
vectors of T[Qv] Grn,m. Recall that this space is given by

T[Qv] Grn,m =
{(

0 −RT
R 0

)∣∣∣∣R ∈ R(n−m)×m
}
.

So we may identify each tangent vector with a ((n−m)×m)-matrix. Specifying an
orthonormal basis of T[Qv] Grn,m thus means to identify an order in which to read
the entries of this matrix. It turns out that the following order yields a particularly
nice form of the Jaobi matrix:

1. the diagonal elements of the middle m×m sub-
matrix

2. the strictly lower diagonal elements in the mid-
dle m×m submatrix

3. the strictly upper diagonal elements in the mid-
dle m×m submatrix

4. the upper (M−m)×m submatrix (row by row)

5. the lower (n−m−M)×m submatrix (row by
row).

1
2

3

5

4 M −m

m

n−m−M

m

Now that we have made the necessary specifications we can compute the Jacobi
matrix which turns out to be the following

Im
−SCv CS
CS −SC

C
. . .

C
S

. . .
S



}
m} m(m−1)

2} m(m−1)
2}

m}
m

 (M −m)-times}
m}
m

 (n−m−M)-times ,

where

SC := diag(sin v2 · cos v1, sin v3 · cos v1, sin v3 · cos v2, . . . , sin vm · cos vm−1)
CS := diag(cos v2 · sin v1, cos v3 · sin v1, cos v3 · sin v2, . . . , cos vm · sin vm−1) .

Using the fact that

det


a1

. . .
ak

b1

. . .
bk

c1

. . .
ck

d1

. . .
dk

 = det


a1 b1
c1 d1

. . .
ak bk
ck dk

 =
k∏
i=1

aidi − bici ,
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we finally get that the normal Jacobian of ϕ is given by

ndet(D([IM ],[In−M ],v)ϕ) =
∏
j<i

∣∣sin2 vi cos2 vj − cos2 vi sin2 vj
∣∣

·
m∏
i=1

∣∣sin(vi)n−m−M · cos(vi)M−m
∣∣ . 2
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