
1

LECTURE V

DIFFERENCE EQUATIONS AND ORTHOGONAL
POLYNOMIALS

Difference equations might be a handy and practical means to compute diffe-
rential equations, but they are considerably more complicated to analyze.

Arieh Iserles

1. Introduction

Orthogonal polynomials play an important role in many branches of math-
ematical physics; for instance, quantum mechanics, scattering theory, and sta-
tistical mechanics. A major topic in orthogonal polynomials is the study of
their asymptotic behavior as the degree grows to infinity. Since the classical
orthogonal polynomials (Hermite, Laguerre, and Jacobi) all satisfy a second-
order linear differential equation, their asymptotic behavior can be obtained
from the WKB approximation or the turning point theory (Lecture III). For
discrete orthogonal polynomials (e.g., Charlier, Meixner, and Krawtchouk),
one can use their generating function to obtain a Cauchy integral representa-
tion and then apply the steepest descent method or its extensions (Lecture II).
However, there are orthogonal polynomials that neither satisfy any differential
equation nor have integral representations. A powerful method, known as the
steepest descent method for the Riemann-Hilbert problem, has recently been
developed that can be applied to such polynomials. Two papers that deserve
special mention are Deift & Zhou [10], and Bleher & Its [5]. In fact, there is
a whole group of people now working in this area, which includes, in addition
to the authors of the two above mentioned papers, Kuijlaars, Kriecherbauer,
McLaughlin, Vanlessen, Venakides and Van Assche; see, e.g., [8, 9, 12, 13, 14].

However, in our view, a more desirable approach to derive asymptotic ex-
pansions for orthogonal polynomials is to develop an asymptotic theory for
linear second order difference equations, in the same way as Langer, Cherry,
Olver and others have done for linear second-order differential equations (Lec-
ture III). Our view is based on the fact that any sequence of orthogonal poly-
nomials satisfies the three-term recurrence relation

pn+1(x) = (anx + bn)pn(x) − cnpn−1(x), n = 1, 2, · · · , (1.1)

where an, bn and cn are constants; see [16, p.42]. If x is a fixed number,
then this recurrence relation is equivalent to the second-order linear difference
equation

y(n + 2) + npa(n)y(n + 1) + nqb(n)y(n) = 0, (1.2)
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where p and q are integers. When the coefficients a(n) and b(n) have asymp-
totic expansions of the form

a(n) =
∞∑

s=0

αs

ns
, b(n) =

∞∑

s=0

βs

ns
, (1.3)

with α0 6= 0 and β0 6= 0, asymptotic solutions to equation (1.2) have been
given by Birkhoff [3], Birkhoff and Trjitzinsky [4]. But, their papers have
been considered far too complicated and even impenetrable. A more accessible
approach to these results has been given in more recent years by Wong and
Li [23, 24]. However, the results in all these papers can be applied to (1.1)
only when x is a fixed number. When x is a parameter and allowed to vary,
not much work has been done in this area until just recently. In a series
of papers [19, 20, 21], Wang and Wong have derived asymptotic expansions
for the solutions to (1.1), which hold uniformly for x in infinite intervals.
They first define a sequence {Kn} recursively by Kn+1/Kn−1 = cn, with K0

and K1 depending on the particular sequence of polynomials. Then they put
An ≡ anKn/Kn+1, Bn ≡ bnKn/Kn+1 and Pn(x) ≡ pn(x)/Kn, so that (1.1)
becomes

Pn+1(x) − (Anx + Bn)Pn(x) + Pn−1(x) = 0. (1.4)

The coefficients An and Bn are assumed to have asymptotic expansions of the
form

An ∼ n−θ
∞∑

s=0

αs

ns
and Bn ∼

∞∑

s=0

βs

ns
, (1.5)

where θ is a real number and α0 6= 0.
In this lecture, we summarize the results in [23, 24] and [20, 21]. More

precisely, in Sec. 2 we present the results for equation (1.2) when p = q = 0,
and discuss the general case in Sec. 3. Equation (1.4) is studied in Sec. 4 when
θ 6= 0, and in Sec. 5 when θ = 0. Interested readers are referred to the original
papers for proofs of the results.

2. Normal and subnormal series

When p = q = 0, equation (1.2) becomes

y(n + 2) + a(n)y(n + 1) + b(n)y(n) = 0. (2.1)

Asymptotic solutions to this equation are classified by the roots of the char-
acteristic equation

ρ2 + a0ρ + b0 = 0. (2.2)

Two possible values of ρ are

ρ1, ρ2 = −1
2
a0 ±

(
1
4
a2

0 − b0

)1/2

. (2.3)
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If ρ1 6= ρ2, i.e., a2
0 6= 4b0, then Birkhoff [2] showed that (2.1) has two linearly

independent solutions yj(n), j = 1, 2, such that

yj(n) ∼ ρn
j nαj

∞∑

s=0

cs,j

ns
, n → ∞, (2.4)

where
αj = − a1ρj + b1

2ρ2
j + ρja0

=
a1ρj + b1

a0ρj + 2b0
, (2.5)

c 0,j = 1 and

ρj(a0 + 2ρj)scs,j =
s∑

r=1

[
ρ2

j2
r+1

(
αj + r − s

r + 1

)

+ ρj

r+1∑

q=0

(
αj + r − s

r + 1 − q

)
aq + br+1

]
cs−r,j ,

(2.6)

s = 1, 2, · · · . This construction fails when and only when ρ1 = ρ2, i.e., when
a2

0 = 4b0. The series in (2.4) are known as normal series or normal solutions.
If ρ1 = ρ2 but their common value ρ = −1

2a0 is not a root of the auxiliary
equation

a1ρ + b1 = 0, (2.7)

i.e., 2b1 6= a0a1, then Adams [1] showed that (2.1) has two linearly independent
solutions yj(n), j = 1, 2, such that

yj(n) ∼ ρn exp((−1)jγ
√

n)nα
∞∑

s=0

(−1)js cs

ns/2
, (2.8)

where

γ = 2
√

a0a1 − 2b1

2b0
, (2.9)

α =
1
4

+
b1

2b0
, (2.10)

and c 0 = 1. Series of the form (2.8) are called subnormal series or subnormal
solutions. Higher coefficients can be determined by formal substitution.

When the double root of the characteristic equation (2.2) satisfies the
auxiliary equation (2.7), i.e., when 2b1 = a0a1, we have three (exceptional)
cases to consider, depending on the values of the zeros α1, α2(Re α2 ≥ Re α1)
of the indicial polynomial

q(α) = α(α − 1)ρ2 + (a1α + α2)ρ + b2. (2.11)
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Case (i) : α2−α1 6= 0, 1, 2, · · · . In this case, (2.1) has independent solutions
yj(n), j = 1, 2, of the form

yj(n) ∼ ρnnαj

∞∑

s=0

cs,j

ns
, n → ∞, (2.12)

with c0,j = 1.
Case (ii) : α2 − α1 = 1, 2, · · · . Here, (2.12) applies only in the case of

j = 1. A second independent solution is given by

y2(n) ∼ ρnnα2

∞∑′

s=0

ds

ns
+ c(log n)y1(n), (2.13)

where the prime on
∑

denotes that the term for s = α2 − α1 is absent. The
coefficients c and ds can be determined by formal substitution, beginning with
d0 = 1.

Case (iii) : α2 = α1. As in case (ii), (2.12) again gives only one solution
y1(n). The second solution is given by

y2(n) ∼ ρnnα2

∞∑

s=1

ds

ns
+ (log n)y1(n). (2.14)

3. Equation (1.2) with p and q 6= 0.

Many orthogonal polynomials satisfy difference equations of the form (1.2),
but not of the form (2.1). For example, the recurrence relation for the Charlier
polynomials is

C
(a)
n+1(x) + (n + a − x)C(a)

n (x) + anC
(a)
n−1(x) = 0, a 6= 0, (3.1)

and the recurrence relation for the Bessel polynomials yn(x) is

yn+1(x) = (2n + 1)xyn(x) + yn−1(x); (3.2)

see [6, Chap.VI].
If the exponents p and q in (1.2) are related in the manner q = 2p, then

(1.2) can be reduced to (2.1) by using the transformation

x(n) = [(n − 2)!]µy(n). (3.3)

Indeed, substitution of (3.3) in (1.2) gives the equivalent equation

x(n + 2) + np+µa(n)x(n + 1) + nq+2µb∗(n)x(n) = 0, (3.4)

where

b∗(n) = b(n)
(

1 − 1
n

)µ

=
∞∑

s=0

b∗s
ns

. (3.5)
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(Note that the constant term in the expansion (3.5) is again not zero.) If
q = 2p then, by taking µ = −p, (3.4) becomes an equation of the same form
as (2.1). Thus, our discussion of equation (1.2) consists of only two cases,
namely, (i) q < 2p and (ii) q > 2p. We set k ≡ 2p− q. Each of these two cases
has two or three subcases, depending on the values of k.

In case (i), i.e., when k > 0, it has been shown in [23] that equation (1.2)
has an asymptotic solution of the form

y1(n) ∼ [(n − 2)!]pρnnα
∞∑

s=0

cs

ns
, (3.6)

where ρ = −a0, α = a1/a0 if k > 1, and

α =
1
a0

(
a1 −

b0

a0

)
if k = 1. (3.7)

A second independent solution is given by

y2(n) = [(n − 2)!]q−pρnnα
∞∑

s=0

ds

ns
, (3.8)

where ρ = −b0/a0,

α =
b0

a2
0

− a1

a0
+

b1

b0
− p + q if k = 1, (3.9)

and
α =

b1

b0
− a1

a0
− p + q if k > 1. (3.10)

Recursive formulas can be obtained for the coefficients cs and ds by formal
substitution.

In case (ii), i.e., when k < 0, we have three subcases to consider depending
on whether k = −1, or k ≤ −3 and is odd, or k ≤ −2 and is even. If k = −1,
then two asymptotic solutions are of the form

yj(n) ∼ [(n − 2)!]q/2ρn
j exp(γj

√
n)nα

∞∑

s=0

cs,j

ns/2
, (3.11)

j = 1, 2, where ρ2
j = −b0, γj = −a0/ρj and

α =
b1

2b0
+

q

4
. (3.12)

If k ≤ −3 and k is odd, then the exponential factor in (3.11) is absent and
equation (3.11) becomes

yj(n) ∼ [(n − 2)!]q/2ρn
j nα

∞∑

s=0

cs,j

ns/2
, (3.13)
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where ρ and α are as given in (3.11) and (3.12). If k ≤ −2 and k is even, then
coefficients of odd powers of n− 1

2 all vanish and (3.11) simplifies to

yj(n) ∼ [(n − 2)!]q/2ρn
j nαj

∞∑

s=0

cs,j

ns
(3.14)

with ρ2
j = −b0(j = 1, 2), αj = α given in (3.12) if k = −4,−6, · · · , and

αj = − 1
2ρ2

j

(
b1 +

1
2
qb0 + ρja0

)
if k = −2. (3.15)

4. Airy-type Expansion

Let τ0 be a constant, and put ν := n + τ0. Clearly, the expansions in (1.5)
can be recast in the form

An ∼ ν−θ
∞∑

s=0

α′
s

νs
and Bn ∼

∞∑

s=0

β′
s

νs
. (4.1)

In (1.4), we now let x = νθt and Pn = λn. Substituting (4.1) into (1.4) and
letting n → ∞ (and hence ν → ∞), we obtain the characteristic equation

λ2 − (α′
0t + β′

0)λ + 1 = 0. (4.2)

The roots of this equation are given by

λ =
1
2
[
(α′

0t + β′
0) ±

√
(α′

0t + β′
0)2 − 4

]
, (4.3)

and they coincide when t = t±, where

α′
0t± + β′

0 = ±2. (4.4)

The values t± play an important role in the asymptotic theory of the three-
term recurrence relation (1.4), and they correspond to the transition points
(i.e., turning points and poles) occurring in differential equations; cf. [15,
p.362]. For this reason, we shall also call them transition points. Since t+ and
t− have different values, we may restrict ourselves to just the case t = t+. For
t near t+, we try a formal series solution to (1.4) in the form

Pn(x) =
∞∑

s=0

χs(ξ)δs, (4.5)

where δ is a small quantity depending on ν (e.g., a power of ν−1) and ξ depends
on x and ν. This particular form of expansion was suggested by Costin and
Costin [7]. In terms of the exponent θ in (4.1) and the transition point t+,
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we have three cases to consider; namely, (i) θ 6= 0 and t+ 6= 0; (ii) θ 6= 0 and
t+ = 0; and (iii) θ = 0.

In this section, we shall consider only the first case, namely, case (i). For
simplicity, we assume θ > 0. The analysis for the case θ < 0 is very similar;
for an important example with θ = −1, the interested reader is referred to
[19]. In case (i), we choose

τ0 = −(α1t+ + β1)
(2 − β0)θ

(4.6)

so that
α′

1t+ + β′
1 = 0. (4.7)

Also, in (4.5), we choose δ = ν− 1
3 and ξ = δ−2ζ(t), where ζ(t) is an increasing

function with ζ(t+) = 0. Substituting (4.5) into (1.4), we find that χ0 satisfies
the Airy equation

χ′′(ξ) = Θ3ξχ(ξ), (4.8)

where Θ3 = α′
0/θ2t2+ζ ′3(t+), and that each χs, s = 1, 2, · · · , is a solution of an

inhomogeneous Airy equation. (For details, see [18, Chap.3].) This suggests
that instead of (4.5), we might as well try the more accurate formal series
solution

Pn(νθt) = ν
1
6

(
4ζ

(α′
0t + β′

0)2 − 4

) 1
4
[
Ai(ν

2
3 ζ)

∞∑

s=0

As(ζ)
νs

+
Ai′(ν

2
3 ζ)

ν
1
3

∞∑

s=0

Bs(ζ)
νs

]
,

(4.9)

which we have encountered in the differential equation theory [15, p.409] and
the integral approach [22, p.370]. It turns out that this form of solution is not
sufficiently general, unless

α′
1 = β′

1 = 0. (4.10)

It is interesting to note that this condition holds in most of the classical cases.
In fact, in [11] Dingle and Morgan have assumed that α2s+1 = β2s+1 = 0 for
s = 0, 1, 2, · · · . For a more general form of the solution, we refer the reader to
[20]. To show that (4.9) is indeed an asymptotic expansion, we need first to
determine the function ζ(t) in the argument of the Airy function. To do this,
we first substitute (4.9) in (1.4), then match the coefficients of Ai and Ai′, and
finally let ν → ∞. This leads us to

2
3
[ζ(t)]

3
2 = α′

0 t1/θ

∫ t

t+

s−1/θ

√
(α′

0s + β′
0)2 − 4

ds

− log
α′

0t + β′
0 +

√
(α′

0t + β′
0)2 − 4

2

(4.11)
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if t ≥ t+, and

2
3
[−ζ(t)]

3
2 =cos−1 α′

0t + β′
0

2

− α′
0 t1/θ

∫ t+

t

s−1/θ

√
4 − (α′

0s + β′
0)2

ds
(4.12)

if t < t+. To make the presentation simpler, we have assumed in [20] that
t− < 0 < t+. This assumption is equivalent to the condition |β0| < 2.

The second solution, independent of (4.9), is given by

Qn(νθt) ∼ ν
1
6

(
4ζ

(α′
0t + β′

0)2 − 4

) 1
4
[
Bi(ν

2
3 ζ)

∞∑

s=0

As(ζ)
νs

+
Bi′(ν

2
3 ζ)

ν
1
3

∞∑

s=0

Bs(ζ)
νs

]
.

(4.13)

The coefficients As(ζ) and Bs(ζ) are determined successively from some re-
cursive formulas, beginning with A0(ζ) = 1 and ζ

1
2 B0(ζ) = 0.

5. Bessel-type Expansion

We now consider case (iii), i.e., θ = 0 in (4.1). As in Sec. 4, we let τ0 be a
constant and define N := n+ τ0. The characteristic equation (4.2) is obtained
in the same manner, except that t is replaced by x. The characteristic roots
again coincide when x = x±, where α0x± + β0 = ±2. For x near x+, we try a
formal series solution of the form

Pn(x) =
∞∑

s=0

χs(ξ)N−s, (5.1)

where ξ depends on x and N . In the present case, we choose ξ = Nζ1/2(x),
where ζ(x) is an increasing function with ζ(x+) = 0. Substituting (5.1) into
(1.4), one finds that χ0(ξ) satisfies the Bessel equation

d2χ0

dξ2
=

(
α′

0

ζ ′(0)
+

α′
2x+ + β′

2

ξ2

)
χ0.

Thus, it follows that χ0(ξ) can be expressed in terms of either the Bessel
functions Jν(ξ) and Yν(ξ), or the modified Bessel functions Iν(ξ) and Kν(ξ).
That is, there are constants C1 and C2 such that

χ0(ξ) = C1ξ
1/2Jν(ξ) + C2 ξ1/2Yν(ξ) if α′

0 < 0

and
χ0(ξ) = C1ξ

1/2Iν(ξ) + C2 ξ1/2Kν(ξ) if α′
0 > 0,
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where

ν =
(

α′
2x+ + β′

2 +
1
4

)1/2

(5.2)

and we take the square root with nonnegative real part. Moreover, each of
the subsequent coefficient functions χs(ξ), s = 1, 2, · · · , in (5.1) satisfies an
inhomogeneous Bessel equation. This suggests that instead of (5.1), we might
as well try the formal series solution of the form

Pn(x) = N
1
2 Zν(Nζ

1
2 )

∞∑

s=0

As(ζ)
N s

+ N
1
2 ζ

1
2 Zν+1(Nζ

1
2 )

∞∑

s=0

Bs(ζ)
N s

(5.3)

motivated from the difference equation theory [15, p.441]. In (5.3), Zν(ξ) can
be any solution of the modified Bessel equation

y′′ +
1
x

y′ −
(

1 +
ν2

x2

)
y = 0. (5.4)

The function ζ(x) in (5.3) can be determined by subtituting (5.3) in (1.4),
matching the coefficients of Zν and Zν+1, and letting n → ∞. The result is

ζ
1
2 (x) = cosh−1

(
α′

0x + β′
0

2

)
. (5.5)

In [21], it was shown that when θ = 0 in (4.1), equation (1.4) has a pair of
linearly independent solutions

Pn(x) ∼
(

4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[
N

1
2 Iν(Nζ

1
2 )

∞∑

s=0

As(ζ)
N s

+ N
1
2 ζ

1
2 Iν−1(Nζ

1
2 )

∞∑

s=0

Bs(ζ)
N s

] (5.6)

and

Qn(x) ∼
(

4ζ

(α′
0x + β′

0)2 − 4

) 1
4
[
N

1
2 Kν(Nζ

1
2 )

∞∑

s=0

As(ζ)
N s

+ N
1
2 ζ

1
2 Kν−1(Nζ

1
2 )

∞∑

s=0

Bs(ζ)
N s

]
,

(5.7)

where ν is given in (5.2) and

N = n + τ0 = n − α3x+ + β3

2
(
ν2 − 1

4

) . (5.8)
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