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Abstract

In the literature, many people have used pure one-dimensional theories to study
boundary-value and/or initial-value problems of phase-transforming materials. In
this paper, we shall show that these pure one-dimensional theories have some essen-
tial defects. More specifically, we reveal that for these materials there do not exist
one-dimensional stress problems (at least in the continuum scale). Thus, to model
phase-transforming materials physically and mathematically, it is essential to con-
sider the influence from the other dimension(s). For a slender circular cylinder, by
taking into account the effects due to the radial deformation, we establish the proper
model equation, which shows that the problem is a singular perturbation one. The
model equations used in the literature are only the leading order equations valid in
the outer regions. The lack of uniqueness of solutions in the pure one-dimensional
theories (both static and dynamical) is well-known (the author thinks that it is
due to the above-mentioned defects). In the literature, the kinetic relation, which
is regarded as an extra constitutive relation for the material to be determined ex-
perimentally, is proposed to give an additional condition (besides the two jump
conditions across the phase boundary) to obtain unique solutions. Here, by using
our model equation and matching its traveling wave solution to those in the outer
regions, we obtain three relations for three unknowns, which provide the unique-
ness conditions for solutions. Also, these three conditions are given in terms of the
stress function (i.e., the usual strain-stress relation) alone, independent of the no-
tion of the kinetic relation. Qur results seem to resolve the long outstanding issue of
nonuniqueness of solutions in modeling dynamical problems of phase-transforming
materials.
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1 Introduction

Phase-transforming materials (e.g., shape memory alloys and shape memory polymers)
have many applications. For example, they have been used to design dampers for satel-
lite applications, rotary actuators, snake-like robots and delicated medical devices. Many
authors have studied various aspects of these types of materials (e.g., Boullay et al. 2002,
Ahluwalia and Ananthakrishna 2001, Barsch and Krumhansl 1984, Bales and Gooding
1991, Kartha et al. 1995). On the physical and mathematical modeling of these materials,
one important and difficult issue is the nonuniqueness of solutions. In a recent article by
Abeyaratne et al (2001), an elegent review was given based on the papers by Abeyaratne
and Knowles (1991, 1993 and 2000). They considered the impact-induced phase transition
problem in a semi-infinite slab with a given velocity —V at the end. The governing equa-

tions (in a Lagrangian description) used by them were pure one-dimensional dynamical
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where z and ¢ are respectively the spatial and temporal variables, v = w, (a subscript
is used to denote the derivative, whenever suitable) is the axial strain and v = w; is the
velocity (w is the axial displacement), o is the stress and p is the density. The system
(1.1) and (1.2) is hyperbolic for a standard material for which ¢’(y) > 0 and is hyperbolic-
elliptic for a typical phase-transforming material for which o’(7y) changes signs (usually
the strain-stress curve has a peak-valley combination). For a phase-transforming material,
when the given velocity V is within a certain interval, the phase boundary is induced.
Abeyaratne et al. (2001) gave the solution in the x — ¢ plane, which has the structures
of one shock wave and a phase boundary. More recently, Knowles (2002) considered the
case where o’(y) > 0 but o(7y) has an inflection point. He showed that when the phase
boundary is induced, there is also a rarefaction wave; see Figure 1. The appearence of
the rarefaction wave seems to be natural (and probably should also be present in the case
where ¢’(7y) changes signs). (Remark: For the purpose of the present paper , whether
the  —t plane has a structure shown in Abeyaratne at al (2001) or Knowles (2002) makes

no difference.)
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Figure 1: Impact-induced tensile wave with a similarity form (v(z/t),y(z/t))

Across the phase boundary, there are the usual two jump conditions (see Knowles
2002):

(Yr=77)s+ (Wt +V) =0, (1.3)
o(y") —o(y7) +ps(vT +V) =0, (1.4)

where $ is the speed of the phase boundary. In the above two equations, v+ can be
related to vt through the stress function o(v) but they only provide two relations for
three unknowns 7,7~ and $. Thus, the solution is not unique and actually there is
a one-parameter family of solutions. Abeyaratne and Knowles (1991, 1993 and 2000)
introduced the concept of driving force g(t), which is defined via the dissipation rate D(t)

D(t) = g(t)$ (1.5)
and can be expressed as
)= [ o)y - 2L iy (16)

To determine the solution uniquely, they introduced the kinetic relation which means that
the driving force is a function of the speed s (i.e., g(t) = ¢(3)). It was stated in Abeyaratne
et al (2001) that this relation “is part of the charaterization of the material and needs to be

determined through a combination of lattice-scale modeling and laboratory experiments”.



However, as far as the author knows, such a function has never been provided in the
literature. Since ¢(3) is not known, in the literature people have used some hypotheses,
such as maximally dissipative kinetics or dissipation-free kinetics. However, as pointed
out in Knowles (2002, p.1173), there is “ - - the lack of a physical basis for choosing any
particular kinetic relation or regularizing augmentation to complete the model - - 7. Also,
no mathematical justifications have been provided for these hypotheses. Rather, they
were used artificially to just single out the solutions. Certainly, for a given material, not
all of these hypotheses can be valid.

Many authors have used these concepts proposed by Abeyaratne and Knowles (e.g.,
Truskinovsky and Vainchtein 2003, Bruno et al 1995, Levitas and Preston 2002, Shenoy
et al. 1999). However, for a standard material, once the constitutive relation (i.e., the
strain-stress relation) is given, usually one can determine everything in principle. It seems
natural to ask the question: can we also determine everything for a phase-transforming
material for which the only essential difference between it and a standard one is that its
constitutive relation has a different character? One purpose of the present paper is to
derive the uniqueness conditions for solutions based on the given strain-stress relation
alone.

As noted by many people in the past, the lack of uniqueness of solutions is usually
because some important physical effects are neglected in the model. So, for a phase-
transforming material, what effects are neglected in the pure one-dimensional model (1.1)
and (1.2)7 In the next section, we shall show that to model phase transition problems
one should consider the influence from other dimension rather than only considering the
effects in the axial dimension. Then, we shall establish the proper model equation in
section 3 through an approach in nonlinear wave theory. Based on this model equation,
by using the matched asymptotics, three conditions will be derived which provide the

uniqueness conditions for solutions.

2 Non-existence of One-dimensional Stress Problems

Consider the axial equilibrium equation in an axially symmetrical static problem
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where S,z and S.r are the components of the first Piolar-Kirchhoff stress tensor, and

0, (2.1)

(r,0,z) and (R,©, Z) are the current and reference cylindrical coordinates, respectively
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(for convenience, we use Z as the axial spatial variable instead of z). For a thin bar (in
experiments, the ratio of the radius and length is about 61—0), one might think that the
last two terms in (2.1) (representing the influence of the radial deformation in the axial
direction) are very small and can be neglected. For standard elastic materials, indeed
such an approximation is valid (actually, %ﬂ and %ﬂ are exponentially small for a neo-
Hookean material; cf. Dai and Bi (2001)). However, for a phase-transforming material,
the strain-stress curve typically has a peak-valley combination. In the loading process,
as the external stress approaches the peak value o, say, it is equal to o, . In this case,
%ggz = —a—gfyzfyz is exactly equal to zero. Then, the terms, a_géﬂ and %ﬁ, no matter how
small they are, are dominant terms and cannot be neglected! This implies there must
be a radial deformation in the process of phase transformation. Thus, to model phase
transitions, the influence of the radial deformation should be taken into account.

Phase transitions are also found in materials whose strain-stress curves are strictly
increasing but have an inflection point (see Knowles 2002 and Favier et al. 2001). In this

case, we differentiate (2.1) with respect to Z to obtain
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In the loading process, as the external stress approaches the value (say, o; ) at the inflec-
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tion point, 86‘;22 = 86522 Yz + Bgf Yzz = ?‘gﬁz’)’zz since %Syngyz = ( exactly. On the other
2
hand, %—Z%-I% and %Q;—%ﬂ are of the same order as ng,z’YZZ (cf. the results for a neo-Hookean

material (Dai and Bi 2001)). As a result, the influence of the radial deformation should
not be neglected. In this case, the radial deformation is induced as the external stress
tends to o; and the phase transformation begins.

According to the above analysis, it can be seen that in both cases when the phase
transformation takes place the radial deformation must be present and is a domiant
factor (or at least one of the dominant factors). Although our discussions hold for static
problems, naturally any effects which are important in static problems should also be
important in dynamical problems. Thus, we draw the following conclusion:

For phase-transforming materials whose strain energy functions are not strictly convex
(equivalently, the strain-stress curves have a peak-valley combination or have an inflection

point), there do not exist one-dimensional stress problems in phase transitions.



3 Model Equations

Based on the results given in section 2, it can be seen that to model phase transition
problems, it is essential to take into account the influence of the radial deformation.
Here, we shall establish the proper model equation by considering which terms should be
present and then combining them together.

First, when the phase transformation has not started, the model equation should be

able to yield the correct result for a uniform state for which the equation has the form

oz =0. (3.1)

Thus, the term oz should be present.

The linearization of oz gives the term Fwzz, where E is the Young’s modulus and w
is the axial displacement. The simplest model for linear waves propagating in a bar (rod)
is the classical wave equation

pwy — Ewzz = 0. (3.2)
Thus, pwy should be present in the model equation so that pwy —oz can yield pwy—FEwzz
when the latter is linearized.

As discussed in section 2, to model phase transitions, one should take into account
the radial deformation. For linear waves, when the lateral movement is present, they are
dispersive. Linear dispersive terms are wzzzz, Wzzyn and wyy (dispersive terms with sixth-
order or higher even-order derivatives, representing higher-order effects, will be neglected

in our model). Then, combining these terms together, we have the model equation

pwi — 0z + Apwzzzz + Bpwzzy + Cu pPwiy = 0 (3.3)

with three undertermined constants A, B and C, where p is the shear modulus.

To determine these constants, the idea is to match the dispersion relation of this model
equation to the exact dispersion relation based on the three-dimensional field equations
up to a certain asymptotic order (cf. Whitham 1974). The exact dispersion relation for
linear waves in a circular cylinder is the so-called Pochhammer frequency equation, which
takes the form (see Achenbach 1990)

2p
a

(¢ + k*) 1 (pa)Ji(qa) — (9% — k*)*Jo(pa) J1(qa) — 4k*pqJi(pa)Jo(qa) =0,  (3.4)



where a is the radius, k is the wave number, Jo(-) and J;(-) represent the Bessel functions,

and \ ,
w W

PP==5-K, ¢=5-F (3.5)
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Here, ¢, and cr are the longitudinal-wave speed and shear-wave speed, respectively.

For linear waves in a slender circular cylinder, the first mode is dominant. Thus,
we require that the dispersion relation of the model equation matches that of the three-
dimensional field equations up to O(a?) as k — 0 (at O(1) they are automatically matched
since the linearized version of (3.3) contains pwy — Ewzy5 and the wave propagates with the
bar-wave speed ¢, = \/E-/p) On the other hand, the effect of the radial deformation comes
into the axial equation through the shear strain. Thus, we require that the dispersion
relation of (3.3) matches that of the three-dimensional field equations at O(1) for the
second mode as k — oo (i.e., in this case the phase velocity should match the shear-wave
speed cr).

From (3.4), we find for the first mode as k¥ — 0 that

2

w v
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where w is the frequency and v is the Poisson’s ratio. For the second mode, as k — oo
we have
% = or. (3.7)

"The matching of the dispersion relation of (3.3) to (3.7) yields two relations: 24 = 2C =
—B. Then, the matching to (3.6) determines B completely. As a result, we obtain

Wy — p oz + MiaPwzzzz — 2miaPcr w2y + Myl wgy = 0 (3.8)
or
-1 2 —4 2 2 2 _
Wy — P~ 0z +myacr [(wy — cGwzz)y — cr(wy — crwzz)zz) =0, (3.9)
where ) o
1 wvecreg
m) = ——p—o_, (3.10)
3(cf —c})?

Equation (3.8) or (3.9) is the model equation for phase transitions in a slender circular
cylinder, which has taken into account the effects due to the radial deformation. It can be
seen from (3.9) that the waves exhibit clearly two-wave structures, one with the bar-wave

speed ¢, and the other with the shear-wave speed cy.



Equation (3.8) can also be derived from the three-dimensional field equations together
with the traction free boundary conditions in the lateral surface by a consistent asymptotic
approach as we (Dai and Huo 2002 and Dai and Fan 2004) have carried out for nonlinear
waves in slender circular cylinders composed of standard elastic materials. It should
be noted that for an initial-value problem we require four initial conditions. One can
impose the standrad conditions on the axial displacement and velocity. The other two
conditions should be on wy and wy,. In the asymptotic approach, they can be related to
the axial and radial displacements and the axial and radial velocities. Thus, to use this
model equation for initial-value problems, one can further impose the initial conditions
on the radial displacement and velocity. The results based on the asymptotic approach
(very lengthy) will be reported elsewhere. Here, one of the main purposes is to establish

the uniqueness conditions for solutions, for which to have the correct model equation is

sufficient.

4 Uniqueness Conditions

From the model equation (3.8), it is easy to see the defects of the pure one-dimensional
model (1.1) and (1.2). For small a, (3.8) represents a singular perturbation problem
(where in front of the highest-derivative terms there is a small parameter). According
to the standard singular perturbation theory, there should be outer and inner (boundary

layer) regions. Only in the outer regions, at the leading order (O(1)) one has
wy —p oz =0, (4.1)

which is just the one-dimensional model (1.1) and (1.2) in a different form. Thus, the
solutions which were constructed based on the pure one-dimensional model in the liter-
ature are only valid to the leading order in the outer regions. In the inner region, the
higher-order derivatives come into play, and one should use the full equation (alterna-
tively, one may introduce proper scalings to use the boundary layer equation. However,
the full equation is valid everywhere and using it has the advantage that it is more flexible

in choosing the points to do the matching to the outer regions). We rewrite (3.8) as

vy — p”la’('y)fyz +miayzz4 — 2mlc}2a2022t e mlc}‘lazvm =0, (4.2)

vz = Y. (4.3)



The reason is that the axial strain and velocity, but not the axial displacement, vary
rapidly in the inner region.

The solution shown in Figure 1 is valid in the outer regions. Roughly speaking, one
outer region (denoted by R;) is a region, with the rarefaction wave and the undisturbed
region included, some distance away from the phase boundary to the right, and another
outer region (denoted by Ry) is some distance away from the phase boundary to the left.
For a sub-region of R, to the left of the rarefaction wave, the strain is in a traveling wave
state as time increases (along the line -‘% = §, the strain is always constant). The same
conclusion holds for a sub-region in Ry. The inner region (denoted by I) is in between
R; and R,. As in the overlapping region of R; and I and that of Ry and I the strain is
in a traveling wave state with propagating speed 3, the strain in the whole domain of I
should also be in a traveling wave state with the same propagating speed. Thus, we seek

the traveling wave solution of (4.2) and (4.3) and let
v=f(), §&=2Z-st (4.4)
Integrating the above equation with respect to Z once, we obtain
z
w= [ f(x — st)dx — Ve, (4.5)
0

where Zj is a point in the overlapping region of Ry and I and —V't appears in the left

hand side in order to match the velocity at Z;. Then, we have
v=—8f(Z = 5t)+ §f(Zo— $t) =V = —=5f(&) + v~ — V. (4.6)

Here, use has been made of f(Zy — $t) = 7|z, = 7~. Matching the above relation to the

velocity at a point Z; in the overlapping region of I and R;, we have
(Yr=7)s+ (@t +V)=0. (4.7)

Here, use has been made of the fact that at Z; the strain is v*. Equation (4.7) is just the
jump condition (1.3)! This is understandable: If one has used the full equation correctly,
one should be able to recover the results based on the correct degenerated equation.
However, when a is nonzero, 4y and v~ should be understood to be the strains at Z; and
Zy respectively, not the strains just across the phase boundary (which has a structure,

not a simple jump, in the case of non-zero a).



Substituting (4.4) and (4.6) into (4.2) and integrating once, we obtain
$f = p7lo(f) +mid®(1 = §/er)’ " = e, (4.8)

where ¢, is an integration constant. By using the velocity and strain values at Z; and Z;,
we find that

a =58y —plo(y) =" —plo(yt). (4.9)
By further using (4.7) in the above equation, we obtain
o(yf)—o(v )+ 50T+ V) =0. (4.10)
This is just the second jump condition (1.4)! “
Multiplying (4.8) by f’ and integrating once more, we obtain
—-p- / dfy-{- gma 2(1=8/cr)*(f)? = eof + oo, (4.11)

where c, is another integration constant. By using the velocity and strain values at Z,
and Zi, we find that

_ L. RPN [
2= g7t olr) = 37 =pT o) = 5 =7 [ oy (412)
After some rearrangement, we have
v 9
L, o@dy=vo(r) = v*olr) - £ty — 4. (4.13)

Equations (4.7), (4.9) and (4.13) provide three equations for three unknowns v+, v~ and
s, and these are the uniqueness conditions for the solution. We point out that these three
conditions are derived without using any notion of the kinetic relation.

In the literature, it is stated that the kinetic relation (i.e., the specific form of the
driving force in terms of §) has to be determined from the lattice model and extra exper-
iments, independently from the usual constitutive relation between the stress and strain.
Here, we have actually derived the uniqueness conditions based on the given stress func-
tion o(vy) alone. Many people have also used hypotheses, such as dissipation-free kinetics
and maximally dissipative kinetics, in order to determine the solution uniquely. It seems
that these hypotheses are not necessary and incorrect for isothermal materials.

Using quadrature on (4.11) will give the detailed structure of the phase boundary.
This and other issues, such as the asymptotic structure of the phase boundary for small
a, the calculations of the dissipation rate and driving force for a nonzero a (it should be
noted that the expression (1.6) does not stand for the driving force for nonzero a) and

the nucleation condition, will be addressed and reported in the near future.
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5 Conclusions

Important contributions have been made towards the understanding of dynamical phase
transition problems in the work of Abeyaratne and Knowles and others; see the refer-
ences cited in Abeyaratne et al. 2001. Solutions obtained by them are valid in the outer
regions and the driving force (a quantity associated with dissipation rate and named by
them) is also an important concept. Here, we have shown that for phase-transforming
materials, there do not exist one-dimensional stress problems. Thus, it is essential to
consider the influence of the radial deformation for phase transition problems in a cir-
cular rod (bar). We have adopted an approach similar to one used for nonlinear waves
in fluids to obtain the model equation which takes into account the effect of the radial
deformation. It turns out that the model equation represents a singular perturbation
problem and the pure one-dimensional model is only the leading order equation at the
outer regions. Then, by matching the traveling wave solution in the inner (boundary
layer) region to the solutions in the two outer regions, we have obtained three equations
for three unknowns across the phase boundary, which provide the uniqueness conditions
for the solution. Our results seem to resolve the long outstanding issue of nonuniqueness
of solutions in dynamical problems for phase-transforming materials. It should be em-
phasized that, although the uniqueness conditions obtained are for a particular physical
problem, it seems that these conditions may apply to other physical problems which are
modeled by the hyperbolic-elliptic equations (1.1) and (1.2) (the Lax entropy condition
was obtained for gas dynamical equations but it also applies to other hyperbolic equa-
tions). Finally, we point out that our conclusion on the non-existence of one-dimensional
stress problems for phase-transforming materials is purely based on the fact that there is a
maximum,/minimum in the constitutive strain-stress curve. It seems that for other physi-
cal problems if the constitutive relations have the same critical feature, the non-existence

of one-dimensional problems might also hold.
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