Controllable Biodegradable Mg Implant

Personnel: WU ge (Research Fellow, ge.wu@cityu.edu.hk, Tel: (852) 3442 8227)

We are the first to fabricate the supra-nano-dual-phase glass-crystal alloy structure, see Nature (2017) 545, 80-83 (selected as the cover story of the issue 4 May 2017). This new structure contributes to an ultrahigh strength of 3.3 GPa for a magnesium-based alloy. The strength has reached the near-ideal strength of E/20, where E is the Young’s Modulus of the material. Supra-nano is defined to be that the size of each phase is less than 10 nm.

Uniqueness & Competitive Advantages

  • Ultrahigh strength (3.3 GPa), 10 times higher than that of conventional Mg alloy (~0.2 GPa);
  • Controllable biodegradable property and bio-compatible to human body;
  • Excellent wear resistance, 10 times of that of conventional Mg alloy.

Potential Applications

  • New prototype of bio-degradable implantation with ultrahigh strength and excellent wear resistance;
  • A promising material to fabricate flexible micro-electromechanical systems (MEMS);
  • Anti-wear and anti-corrosion coating for protecting base materials.

Relevant Publication
Ge Wu, Ka-Cheung Chan, Linli Zhu, Ligang Sun, Jian Lu, Dual-phase nanostructuring as a route to high-strength magnesium alloysNature (2017) 545, 80-83

Filed Patents
15/345,863(US), 15/349,318(US), 201711106892.3(PRC), 201711092230.5(PRC)